亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent results in compressed sensing showed that the optimal subsampling strategy should take into account the sparsity pattern of the signal at hand. This oracle-like knowledge, even though desirable, nevertheless remains elusive in most practical application. We try to close this gap by showing how the sparsity patterns can instead be characterised via a probability distribution on the supports of the sparse signals allowing us to again derive optimal subsampling strategies. This probability distribution can be easily estimated from signals of the same signal class, achieving state of the art performance in numerical experiments. Our approach also extends to structured acquisition, where instead of isolated measurements, blocks of measurements are taken.

相關內容

Single-parameter summaries of variable effects are desirable for ease of interpretation, but linear models, which would deliver these, may fit poorly to the data. A modern approach is to estimate the average partial effect -- the average slope of the regression function with respect to the predictor of interest -- using a doubly robust semiparametric procedure. Most existing work has focused on specific forms of nuisance function estimators. We extend the scope to arbitrary plug-in nuisance function estimation, allowing for the use of modern machine learning methods which in particular may deliver non-differentiable regression function estimates. Our procedure involves resmoothing a user-chosen first-stage regression estimator to produce a differentiable version, and modelling the conditional distribution of the predictors through a location-scale model. We show that our proposals lead to a semiparametric efficient estimator under relatively weak assumptions. Our theory makes use of a new result on the sub-Gaussianity of Lipschitz score functions that may be of independent interest. We demonstrate the attractive numerical performance of our approach in a variety of settings including ones with misspecification.

Optimal transport has gained much attention in image processing field, such as computer vision, image interpolation and medical image registration. Recently, Bredies et al. (ESAIM:M2AN 54:2351-2382, 2020) and Schmitzer et al. (IEEE T MED IMAGING 39:1626-1635, 2019) established the framework of optimal transport regularization for dynamic inverse problems. In this paper, we incorporate Wasserstein distance, together with total variation, into static inverse problems as a prior regularization. The Wasserstein distance formulated by Benamou-Brenier energy measures the similarity between the given template and the reconstructed image. Also, we analyze the existence of solutions of such variational problem in Radon measure space. Moreover, the first-order primal-dual algorithm is constructed for solving this general imaging problem in a specific grid strategy. Finally, numerical experiments for undersampled MRI reconstruction are presented which show that our proposed model can recover images well with high quality and structure preservation.

This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noises. The main difficulty lies in the control of the drift coefficient that is neither globally Lipschitz nor one-sided Lipschitz. To handle this difficulty, we propose a novel localization argument and derive the strong convergence rate of the numerical solution to estimate the total variation distance between the exact and numerical solutions. This along with the existence of the density of the numerical solution finally yields the convergence of density in $L^1(\mathbb{R})$ of the numerical solution. Our results partially answer positively to the open problem emerged in [J. Cui and J. Hong, J. Differential Equations (2020)] on computing the density of the exact solution numerically.

This paper studies model checking for general parametric regression models having no dimension reduction structures on the predictor vector. Using any U-statistic type test as an initial test, this paper combines the sample-splitting and conditional studentization approaches to construct a COnditionally Studentized Test (COST). Whether the initial test is global or local smoothing-based; the dimension of the predictor vector and the number of parameters are fixed or diverge at a certain rate, the proposed test always has a normal weak limit under the null hypothesis. When the dimension of the predictor vector diverges to infinity at faster rate than the number of parameters, even the sample size, these results are still available under some conditions. This shows the potential of our method to handle higher dimensional problems. Further, the test can detect the local alternatives distinct from the null hypothesis at the fastest possible rate of convergence in hypothesis testing. We also discuss the optimal sample splitting in power performance. The numerical studies offer information on its merits and limitations in finite sample cases including the setting where the dimension of predictor vector equals the sample size. As a generic methodology, it could be applied to other testing problems.

The prevalence of machine learning in biomedical research is rapidly growing, yet the trustworthiness of such research is often overlooked. While some previous works have investigated the ability of adversarial attacks to degrade model performance in medical imaging, the ability to falsely improve performance via recently-developed "enhancement attacks" may be a greater threat to biomedical machine learning. In the spirit of developing attacks to better understand trustworthiness, we developed two techniques to drastically enhance prediction performance of classifiers with minimal changes to features: 1) general enhancement of prediction performance, and 2) enhancement of a particular method over another. Our enhancement framework falsely improved classifiers' accuracy from 50% to almost 100% while maintaining high feature similarities between original and enhanced data (Pearson's r's>0.99). Similarly, the method-specific enhancement framework was effective in falsely improving the performance of one method over another. For example, a simple neural network outperformed logistic regression by 17% on our enhanced dataset, although no performance differences were present in the original dataset. Crucially, the original and enhanced data were still similar (r=0.99). Our results demonstrate the feasibility of minor data manipulations to achieve any desired prediction performance, which presents an interesting ethical challenge for the future of biomedical machine learning. These findings emphasize the need for more robust data provenance tracking and other precautionary measures to ensure the integrity of biomedical machine learning research.

A population-averaged additive subdistribution hazards model is proposed to assess the marginal effects of covariates on the cumulative incidence function and to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazards model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is outlined to estimate the regression coefficients and a new sandwich variance estimator is proposed. The proposed sandwich variance estimator accounts for both the correlations between failure times and between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazards for the overall model and each covariate. Simulation studies are conducted to investigate the performance of the proposed methods in finite samples. We illustrate our methods using data from the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) trial.

We introduce an extension of first-order logic that comes equipped with additional predicates for reasoning about an abstract state. Sequents in the logic comprise a main formula together with pre- and postconditions in the style of Hoare logic, and the axioms and rules of the logic ensure that the assertions about the state compose in the correct way. The main result of the paper is a realizability interpretation of our logic that extracts programs into a mixed functional/imperative language. All programs expressible in this language act on the state in a sequential manner, and we make this intuition precise by interpreting them in a semantic metatheory using the state monad. Our basic framework is very general, and our intention is that it can be instantiated and extended in a variety of different ways. We outline in detail one such extension: A monadic version of Heyting arithmetic with a wellfounded while rule, and conclude by outlining several other directions for future work.

We propose a dynamic sensor selection approach for deep neural networks (DNNs), which is able to derive an optimal sensor subset selection for each specific input sample instead of a fixed selection for the entire dataset. This dynamic selection is jointly learned with the task model in an end-to-end way, using the Gumbel-Softmax trick to allow the discrete decisions to be learned through standard backpropagation. We then show how we can use this dynamic selection to increase the lifetime of a wireless sensor network (WSN) by imposing constraints on how often each node is allowed to transmit. We further improve performance by including a dynamic spatial filter that makes the task-DNN more robust against the fact that it now needs to be able to handle a multitude of possible node subsets. Finally, we explain how the selection of the optimal channels can be distributed across the different nodes in a WSN. We validate this method on a use case in the context of body-sensor networks, where we use real electroencephalography (EEG) sensor data to emulate an EEG sensor network. We analyze the resulting trade-offs between transmission load and task accuracy.

Discrete latent space models have recently achieved performance on par with their continuous counterparts in deep variational inference. While they still face various implementation challenges, these models offer the opportunity for a better interpretation of latent spaces, as well as a more direct representation of naturally discrete phenomena. Most recent approaches propose to train separately very high-dimensional prior models on the discrete latent data which is a challenging task on its own. In this paper, we introduce a latent data model where the discrete state is a Markov chain, which allows fast end-to-end training. The performance of our generative model is assessed on a building management dataset and on the publicly available Electricity Transformer Dataset.

Uniform error estimates of a bi-fidelity method for a kinetic-fluid coupled model with random initial inputs in the fine particle regime are proved in this paper. Such a model is a system coupling the incompressible Navier-Stokes equations to the Vlasov-Fokker-Planck equations for a mixture of the flows with distinct particle sizes. The main analytic tool is the hypocoercivity analysis for the multi-phase Navier-Stokes-Vlasov-Fokker-Planck system with uncertainties, considering solutions in a perturbative setting near the global equilibrium. This allows us to obtain the error estimates in both kinetic and hydrodynamic regimes.

北京阿比特科技有限公司