The use of vehicle-to-everything (V2X) communication is expected to significantly improve road safety and traffic management. We present an efficient protocol, called the AEE protocol, for protecting data authenticity and user privacy in V2X applications. Our protocol provides event-based likability, which enables messages from a subject vehicle to be linked to a specific event in order to prevent Sybil attacks. Messages on different events are unlinkable to preserve the long-term privacy of vehicles. Moreover, our protocol introduces a new method for generating temporary public keys to reduce computing and transmission overheads. Such a temporary public key is bound with a certain event and is automatically revoked when the event is over. We describe how to apply our protocol in vehicular communications using two exemplar use cases. To further reduce the real-time computational complexity, our protocol enables us to decompose the cryptographic operations into offline processes for complex operations and real-time processes for fast computations.
Mobile autonomy relies on the precise perception of dynamic environments. Robustly tracking moving objects in 3D world thus plays a pivotal role for applications like trajectory prediction, obstacle avoidance, and path planning. While most current methods utilize LiDARs or cameras for Multiple Object Tracking (MOT), the capabilities of 4D imaging radars remain largely unexplored. Recognizing the challenges posed by radar noise and point sparsity in 4D radar data, we introduce RaTrack, an innovative solution tailored for radar-based tracking. Bypassing the typical reliance on specific object types and 3D bounding boxes, our method focuses on motion segmentation and clustering, enriched by a motion estimation module. Evaluated on the View-of-Delft dataset, RaTrack showcases superior tracking precision of moving objects, largely surpassing the performance of the state of the art.
Cyber-Physical Systems (CPSs) are often safety-critical and deployed in uncertain environments. Identifying scenarios where CPSs do not comply with requirements is fundamental but difficult due to the multidisciplinary nature of CPSs. We investigate the testing of control-based CPSs, where control and software engineers develop the software collaboratively. Control engineers make design assumptions during system development to leverage control theory and obtain guarantees on CPS behaviour. In the implemented system, however, such assumptions are not always satisfied, and their falsification can lead to loss of guarantees. We define stress testing of control-based CPSs as generating tests to falsify such design assumptions. We highlight different types of assumptions, focusing on the use of linearised physics models. To generate stress tests falsifying such assumptions, we leverage control theory to qualitatively characterise the input space of a control-based CPS. We propose a novel test parametrisation for control-based CPSs and use it with the input space characterisation to develop a stress testing approach. We evaluate our approach on three case study systems, including a drone, a continuous-current motor (in five configurations), and an aircraft.Our results show the effectiveness of the proposed testing approach in falsifying the design assumptions and highlighting the causes of assumption violations.
The Semantic Web technologies have been used in the Internet of Things (IoT) to facilitate data interoperability and address data heterogeneity issues. The Resource Description Framework (RDF) model is employed in the integration of IoT data, with RDF engines serving as gateways for semantic integration. However, storing and querying RDF data obtained from distributed sources across a dynamic network of edge devices presents a challenging task. The distributed nature of the edge shares similarities with Peer-to-Peer (P2P) systems. These similarities include attributes like node heterogeneity, limited availability, and resources. The nodes primarily undertake tasks related to data storage and processing. Therefore, the P2P models appear to present an attractive approach for constructing distributed RDF stores. Based on P-Grid, a data indexing mechanism for load balancing and range query processing in P2P systems, this paper proposes a design for storing and sharing RDF data on P2P networks of low-cost edge devices. Our design aims to integrate both P-Grid and an edge-based RDF storage solution, RDF4Led for building an P2P RDF engine. This integration can maintain RDF data access and query processing while scaling with increasing data and network size. We demonstrated the scaling behavior of our implementation on a P2P network, involving up to 16 nodes of Raspberry Pi 4 devices.
This expository manuscript presents generalized expressions for the low-frequency voltage gain and terminal impedances of each of the three fundamental bipolar-amplifier topologies (i.e., common emitter, common base, and common collector). Unlike the formulas that students typically learn and designers typically use, the equations presented in this tutorial assume the most general set of conditions: finite output resistance and base-collector current gain, a load resistor at each non-input terminal of the transistor, and a "feedback" resistor between the base and collector terminals. Although perhaps algebraically complex at first glance, emphasis is placed on mathematical elegance and ease of use -- expressions are formulated in terms of sub-terms that capture important aspects of the circuit's behavior. Similarities in the mathematical structure of the results reveal a deeper conceptual connection between different amplifier topologies and, ultimately, a reciprocity relationship between the base and emitter terminals. Familiar approximate expressions are subsumed as special cases. Tables consolidating the expressions in an organized fashion are provided. Companion results for metal-oxide-semiconductor (MOS) single-transistor amplifiers are also included.
High assurance of information-flow security (IFS) for concurrent systems is challenging. A promising way for formal verification of concurrent systems is the rely-guarantee method. However, existing compositional reasoning approaches for IFS concentrate on language-based IFS. It is often not applicable for system-level security, such as multicore operating system kernels, in which secrecy of actions should also be considered. On the other hand, existing studies on the rely-guarantee method are basically built on concurrent programming languages, by which semantics of concurrent systems cannot be completely captured in a straightforward way. In order to formally verify state-action based IFS for concurrent systems, we propose a rely-guarantee-based compositional reasoning approach for IFS in this paper. We first design a language by incorporating ``Event'' into concurrent languages and give the IFS semantics of the language. As a primitive element, events offer an extremely neat framework for modeling system and are not necessarily atomic in our language. For compositional reasoning of IFS, we use rely-guarantee specification to define new forms of unwinding conditions (UCs) on events, i.e., event UCs. By a rely-guarantee proof system of the language and the soundness of event UCs, we have that event UCs imply IFS of concurrent systems. In such a way, we relax the atomicity constraint of actions in traditional UCs and provide a compositional reasoning way for IFS in which security proof of systems can be discharged by independent security proof on individual events. Finally, we mechanize the approach in Isabelle/HOL and develop a formal specification and its IFS proof for multicore separation kernels as a study case according to an industrial standard -- ARINC 653.
Previous evaluations on 6DoF object pose tracking have presented obvious limitations along with the development of this area. In particular, the evaluation protocols are not unified for different methods, the widely-used YCBV dataset contains significant annotation error, and the error metrics also may be biased. As a result, it is hard to fairly compare the methods, which has became a big obstacle for developing new algorithms. In this paper we contribute a unified benchmark to address the above problems. For more accurate annotation of YCBV, we propose a multi-view multi-object global pose refinement method, which can jointly refine the poses of all objects and view cameras, resulting in sub-pixel sub-millimeter alignment errors. The limitations of previous scoring methods and error metrics are analyzed, based on which we introduce our improved evaluation methods. The unified benchmark takes both YCBV and BCOT as base datasets, which are shown to be complementary in scene categories. In experiments, we validate the precision and reliability of the proposed global pose refinement method with a realistic semi-synthesized dataset particularly for YCBV, and then present the benchmark results unifying learning&non-learning and RGB&RGBD methods, with some finds not discovered in previous studies.
Fast screening of drug molecules based on the ligand binding affinity is an important step in the drug discovery pipeline. Graph neural fingerprint is a promising method for developing molecular docking surrogates with high throughput and great fidelity. In this study, we built a COVID-19 drug docking dataset of about 300,000 drug candidates on 23 coronavirus protein targets. With this dataset, we trained graph neural fingerprint docking models for high-throughput virtual COVID-19 drug screening. The graph neural fingerprint models yield high prediction accuracy on docking scores with the mean squared error lower than $0.21$ kcal/mol for most of the docking targets, showing significant improvement over conventional circular fingerprint methods. To make the neural fingerprints transferable for unknown targets, we also propose a transferable graph neural fingerprint method trained on multiple targets. With comparable accuracy to target-specific graph neural fingerprint models, the transferable model exhibits superb training and data efficiency. We highlight that the impact of this study extends beyond COVID-19 dataset, as our approach for fast virtual ligand screening can be easily adapted and integrated into a general machine learning-accelerated pipeline to battle future bio-threats.
The shortest path network interdiction (SPNI) problem poses significant computational challenges due to its NP-hardness. Current solutions, primarily based on integer programming methods, are inefficient for large-scale instances. In this paper, we introduce a novel hybrid algorithm that can utilize Ising Processing Units (IPUs) alongside classical solvers. This approach decomposes the problem into manageable sub-problems, which are then offloaded to the slow but high-quality classical solvers or IPU. Results are subsequently recombined to form a global solution. Our method demonstrates comparable quality to existing whole problem solvers while reducing computational time for large-scale instances. Furthermore, our approach is amenable to parallelization, allowing for simultaneous processing of decomposed sub-problems.
We propose Gibbs-Duhem-informed neural networks for the prediction of binary activity coefficients at varying compositions. That is, we include the Gibbs-Duhem equation explicitly in the loss function for training neural networks, which is straightforward in standard machine learning (ML) frameworks enabling automatic differentiation. In contrast to recent hybrid ML approaches, our approach does not rely on embedding a specific thermodynamic model inside the neural network and corresponding prediction limitations. Rather, Gibbs-Duhem consistency serves as regularization, with the flexibility of ML models being preserved. Our results show increased thermodynamic consistency and generalization capabilities for activity coefficient predictions by Gibbs-Duhem-informed graph neural networks and matrix completion methods. We also find that the model architecture, particularly the activation function, can have a strong influence on the prediction quality. The approach can be easily extended to account for other thermodynamic consistency conditions.
Connected autonomous vehicles (CAVs) promise to enhance safety, efficiency, and sustainability in urban transportation. However, this is contingent upon a CAV correctly predicting the motion of surrounding agents and planning its own motion safely. Doing so is challenging in complex urban environments due to frequent occlusions and interactions among many agents. One solution is to leverage smart infrastructure to augment a CAV's situational awareness; the present work leverages a recently proposed "Self-Supervised Traffic Advisor" (SSTA) framework of smart sensors that teach themselves to generate and broadcast useful video predictions of road users. In this work, SSTA predictions are modified to predict future occupancy instead of raw video, which reduces the data footprint of broadcast predictions. The resulting predictions are used within a planning framework, demonstrating that this design can effectively aid CAV motion planning. A variety of numerical experiments study the key factors that make SSTA outputs useful for practical CAV planning in crowded urban environments.