亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a general abstract framework for database repairing that differentiates between integrity constraints and the so-called query constraints. The former are used to model consistency and desirable properties of the data (such as functional dependencies and independencies), while the latter relates two database instances according to their answers for the query constraints. The framework also admits a distinction between hard and soft queries, allowing to preserve the answers of a core set of queries as well as defining a distance between instances based on query answers. Finally, we present an instantiation of this framework by defining logic-based metrics in K-teams (a notion recently defined for logical modelling of relational data with semiring annotations). We exemplify how various notions of repairs from the literature can be modelled in our unifying framework.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 線性模型 · 貝葉斯推斷 · 線性的 · 頻率主義學派 ·
2023 年 11 月 9 日

Generalized linear models (GLMs) are routinely used for modeling relationships between a response variable and a set of covariates. The simple form of a GLM comes with easy interpretability, but also leads to concerns about model misspecification impacting inferential conclusions. A popular semi-parametric solution adopted in the frequentist literature is quasi-likelihood, which improves robustness by only requiring correct specification of the first two moments. We develop a robust approach to Bayesian inference in GLMs through quasi-posterior distributions. We show that quasi-posteriors provide a coherent generalized Bayes inference method, while also approximating so-called coarsened posteriors. In so doing, we obtain new insights into the choice of coarsening parameter. Asymptotically, the quasi-posterior converges in total variation to a normal distribution and has important connections with the loss-likelihood bootstrap posterior. We demonstrate that it is also well-calibrated in terms of frequentist coverage. Moreover, the loss-scale parameter has a clear interpretation as a dispersion, and this leads to a consolidated method of moments estimator.

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

This study investigates the potential of automated deep learning to enhance the accuracy and efficiency of multi-class classification of bird vocalizations, compared against traditional manually-designed deep learning models. Using the Western Mediterranean Wetland Birds dataset, we investigated the use of AutoKeras, an automated machine learning framework, to automate neural architecture search and hyperparameter tuning. Comparative analysis validates our hypothesis that the AutoKeras-derived model consistently outperforms traditional models like MobileNet, ResNet50 and VGG16. Our approach and findings underscore the transformative potential of automated deep learning for advancing bioacoustics research and models. In fact, the automated techniques eliminate the need for manual feature engineering and model design while improving performance. This study illuminates best practices in sampling, evaluation and reporting to enhance reproducibility in this nascent field. All the code used is available at https: //github.com/giuliotosato/AutoKeras-bioacustic Keywords: AutoKeras; automated deep learning; audio classification; Wetlands Bird dataset; comparative analysis; bioacoustics; validation dataset; multi-class classification; spectrograms.

In a supervised learning problem, given a predicted value that is the output of some trained model, how can we quantify our uncertainty around this prediction? Distribution-free predictive inference aims to construct prediction intervals around this output, with valid coverage that does not rely on assumptions on the distribution of the data or the nature of the model training algorithm. Existing methods in this area, including conformal prediction and jackknife+, offer theoretical guarantees that hold marginally (i.e., on average over a draw of training and test data). In contrast, training-conditional coverage is a stronger notion of validity that ensures predictive coverage of the test point for most draws of the training data, and is thus a more desirable property in practice. Training-conditional coverage was shown by Vovk [2012] to hold for the split conformal method, but recent work by Bian and Barber [2023] proves that such validity guarantees are not possible for the full conformal and jackknife+ methods without further assumptions. In this paper, we show that an assumption of algorithmic stability ensures that the training-conditional coverage property holds for the full conformal and jackknife+ methods.

An explosion of work in language is leading to ever-increasing numbers of available natural language processing models, with little understanding of how new models compare to better-understood models. One major reason for this difficulty is saturating benchmark datasets, which may not reflect well differences in model performance in the wild. In this work, we propose a novel framework for comparing two natural language processing models by revealing their shared invariance to interpretable input perturbations that are designed to target a specific linguistic capability (e.g., Synonym-Invariance, Typo-Invariance). Via experiments on models from within the same and across different architecture families, this framework offers a number of insights about how changes in models (e.g., distillation, increase in size, amount of pre-training) affect multiple well-defined linguistic capabilities. Furthermore, we also demonstrate how our framework can enable evaluation of the invariances shared between models that are available as commercial black-box APIs (e.g., InstructGPT family) and models that are relatively better understood (e.g., GPT-2). Across several experiments, we observe that large language models share many of the invariances encoded by models of various sizes, whereas the invariances encoded by large language models are only shared by other large models. Possessing a wide variety of invariances may be a key reason for the recent successes of large language models, and our framework can shed light on the types of invariances that are retained by or emerge in new models.

Modern high-throughput sequencing assays efficiently capture not only gene expression and different levels of gene regulation but also a multitude of genome variants. Focused analysis of alternative alleles of variable sites at homologous chromosomes of the human genome reveals allele-specific gene expression and allele-specific gene regulation by assessing allelic imbalance of read counts at individual sites. Here we formally describe an advanced statistical framework for detecting the allelic imbalance in allelic read counts at single-nucleotide variants detected in diverse omics studies (ChIP-Seq, ATAC-Seq, DNase-Seq, CAGE-Seq, and others). MIXALIME accounts for copy-number variants and aneuploidy, reference read mapping bias, and provides several scoring models to balance between sensitivity and specificity when scoring data with varying levels of experimental noise-caused overdispersion.

SCONE-GAN presents an end-to-end image translation, which is shown to be effective for learning to generate realistic and diverse scenery images. Most current image-to-image translation approaches are devised as two mappings: a translation from the source to target domain and another to represent its inverse. While successful in many applications, these approaches may suffer from generating trivial solutions with limited diversity. That is because these methods learn more frequent associations rather than the scene structures. To mitigate the problem, we propose SCONE-GAN that utilises graph convolutional networks to learn the objects dependencies, maintain the image structure and preserve its semantics while transferring images into the target domain. For more realistic and diverse image generation we introduce style reference image. We enforce the model to maximize the mutual information between the style image and output. The proposed method explicitly maximizes the mutual information between the related patches, thus encouraging the generator to produce more diverse images. We validate the proposed algorithm for image-to-image translation and stylizing outdoor images. Both qualitative and quantitative results demonstrate the effectiveness of our approach on four dataset.

Most sequence sketching methods work by selecting specific $k$-mers from sequences so that the similarity between two sequences can be estimated using only the sketches. Estimating sequence similarity is much faster using sketches than using sequence alignment, hence sketching methods are used to reduce the computational requirements of computational biology software packages. Applications using sketches often rely on properties of the $k$-mer selection procedure to ensure that using a sketch does not degrade the quality of the results compared with using sequence alignment. In particular the window guarantee ensures that no long region of the sequence goes unrepresented in the sketch. A sketching method with a window guarantee corresponds to a Decycling Set, aka an unavoidable sets of $k$-mers. Any long enough sequence must contain a $k$-mer from any decycling set (hence, it is unavoidable). Conversely, a decycling set defines a sketching method by selecting the $k$-mers from the set. Although current methods use one of a small number of sketching method families, the space of decycling sets is much larger, and largely unexplored. Finding decycling sets with desirable characteristics is a promising approach to discovering new sketching methods with improved performance (e.g., with small window guarantee). The Minimum Decycling Sets (MDSs) are of particular interest because of their small size. Only two algorithms, by Mykkeltveit and Champarnaud, are known to generate two particular MDSs, although there is a vast number of alternative MDSs. We provide a simple method that allows one to explore the space of MDSs and to find sets optimized for desirable properties. We give evidence that the Mykkeltveit sets are close to optimal regarding one particular property, the remaining path length.

This work presents a novel global digital image correlation (DIC) method, based on a newly developed convolution finite element (C-FE) approximation. The convolution approximation can rely on the mesh of linear finite elements and enables arbitrarily high order approximations without adding more degrees of freedom. Therefore, the C-FE based DIC can be more accurate than {the} usual FE based DIC by providing highly smooth and accurate displacement and strain results with the same element size. The detailed formulation and implementation of the method have been discussed in this work. The controlling parameters in the method include the polynomial order, patch size, and dilation. A general choice of the parameters and their potential adaptivity have been discussed. The proposed DIC method has been tested by several representative examples, including the DIC challenge 2.0 benchmark problems, with comparison to the usual FE based DIC. C-FE outperformed FE in all the DIC results for the tested examples. This work demonstrates the potential of C-FE and opens a new avenue to enable highly smooth, accurate, and robust DIC analysis for full-field displacement and strain measurements.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司