The Nearest Neighbor (NN) Representation is an emerging computational model that is inspired by the brain. We study the complexity of representing a neuron (threshold function) using the NN representations. It is known that two anchors (the points to which NN is computed) are sufficient for a NN representation of a threshold function, however, the resolution (the maximum number of bits required for the entries of an anchor) is $O(n\log{n})$. In this work, the trade-off between the number of anchors and the resolution of a NN representation of threshold functions is investigated. We prove that the well-known threshold functions EQUALITY, COMPARISON, and ODD-MAX-BIT, which require 2 or 3 anchors and resolution of $O(n)$, can be represented by polynomially large number of anchors in $n$ and $O(\log{n})$ resolution. We conjecture that for all threshold functions, there are NN representations with polynomially large size and logarithmic resolution in $n$.
Varying dynamics parameters in simulation is a popular Domain Randomization (DR) approach for overcoming the reality gap in Reinforcement Learning (RL). Nevertheless, DR heavily hinges on the choice of the sampling distribution of the dynamics parameters, since high variability is crucial to regularize the agent's behavior but notoriously leads to overly conservative policies when randomizing excessively. In this paper, we propose a novel approach to address sim-to-real transfer, which automatically shapes dynamics distributions during training in simulation without requiring real-world data. We introduce DOmain RAndomization via Entropy MaximizatiON (DORAEMON), a constrained optimization problem that directly maximizes the entropy of the training distribution while retaining generalization capabilities. In achieving this, DORAEMON gradually increases the diversity of sampled dynamics parameters as long as the probability of success of the current policy is sufficiently high. We empirically validate the consistent benefits of DORAEMON in obtaining highly adaptive and generalizable policies, i.e. solving the task at hand across the widest range of dynamics parameters, as opposed to representative baselines from the DR literature. Notably, we also demonstrate the Sim2Real applicability of DORAEMON through its successful zero-shot transfer in a robotic manipulation setup under unknown real-world parameters.
The existing Fr\'echet regression is actually defined within a linear framework, since the weight function in the Fr\'echet objective function is linearly defined, and the resulting Fr\'echet regression function is identified to be a linear model when the random object belongs to a Hilbert space. Even for nonparametric and semiparametric Fr\'echet regressions, which are usually nonlinear, the existing methods handle them by local linear (or local polynomial) technique, and the resulting Fr\'echet regressions are (locally) linear as well. We in this paper introduce a type of nonlinear Fr\'echet regressions. Such a framework can be utilized to fit the essentially nonlinear models in a general metric space and uniquely identify the nonlinear structure in a Hilbert space. Particularly, its generalized linear form can return to the standard linear Fr\'echet regression through a special choice of the weight function. Moreover, the generalized linear form possesses methodological and computational simplicity because the Euclidean variable and the metric space element are completely separable. The favorable theoretical properties (e.g. the estimation consistency and presentation theorem) of the nonlinear Fr\'echet regressions are established systemically. The comprehensive simulation studies and a human mortality data analysis demonstrate that the new strategy is significantly better than the competitors.
Epistemic modals have peculiar logical features that are challenging to account for in a broadly classical framework. For instance, while a sentence of the form $p\wedge\Diamond\neg p$ ('$p$, but it might be that not $p$') appears to be a contradiction, $\Diamond\neg p$ does not entail $\neg p$, which would follow in classical logic. Likewise, the classical laws of distributivity and disjunctive syllogism fail for epistemic modals. Existing attempts to account for these facts generally either under- or over-correct. Some predict that $p\wedge\Diamond\neg p$, a so-called epistemic contradiction, is a contradiction only in an etiolated sense, under a notion of entailment that does not always allow us to replace $p\wedge\Diamond\neg p$ with a contradiction; these theories underpredict the infelicity of embedded epistemic contradictions. Other theories savage classical logic, eliminating not just rules that intuitively fail but also rules like non-contradiction, excluded middle, De Morgan's laws, and disjunction introduction, which intuitively remain valid for epistemic modals. In this paper, we aim for a middle ground, developing a semantics and logic for epistemic modals that makes epistemic contradictions genuine contradictions and that invalidates distributivity and disjunctive syllogism but that otherwise preserves classical laws that intuitively remain valid. We start with an algebraic semantics, based on ortholattices instead of Boolean algebras, and then propose a more concrete possibility semantics, based on partial possibilities related by compatibility. Both semantics yield the same consequence relation, which we axiomatize. We then show how to lift an arbitrary possible worlds model for a non-modal language to a possibility model for a language with epistemic modals.
Stress models are a promising approach for graph drawing. They minimize the weighted sum of the squared errors of the Euclidean and desired distances for each node pair. The desired distance typically uses the graph-theoretic distances obtained from the all-node pair shortest path problem. In a minimized stress function, the obtained coordinates are affected by the non-Euclidean property and the high-dimensionality of the graph-theoretic distance matrix. Therefore, the graph-theoretic distances used in stress models may not necessarily be the best metric for determining the node coordinates. In this study, we propose two different methods of adjusting the graph-theoretical distance matrix to a distance matrix suitable for graph drawing while preserving its structure. The first method is the application of eigenvalue decomposition to the inner product matrix obtained from the distance matrix and the obtainment of a new distance matrix by setting some eigenvalues with small absolute values to zero. The second approach is the usage of a stress model modified by adding a term that minimizes the Frobenius norm between the adjusted and original distance matrices. We perform computational experiments using several benchmark graphs to demonstrate that the proposed method improves some quality metrics, including the node resolution and the Gabriel graph property, when compared to conventional stress models.
Metaverse aims to construct a large, unified, immersive, and shared digital realm by combining various technologies, namely XR (extended reality), blockchain, and digital twin, among others. This article explores the Metaverse from the perspective of multimedia communication by conducting and analyzing real-world experiments on four different Metaverse platforms: VR (virtual reality) Vircadia, VR Mozilla Hubs, VRChat, and MR (mixed reality) Virtual City. We first investigate the traffic patterns and network performance in the three VR platforms. After raising the challenges of the Metaverse streaming and investigating the potential methods to enhance Metaverse performance, we propose a remote rendering architecture and verify its advantages through a prototype involving the campus network and MR multimodal interaction by comparison with local rendering.
In this paper, a kinematically modular approach to robot control is presented. The method involves structures called Elementary Dynamic Actions and a network model combining these elements. With this control framework, a rich repertoire of movements can be generated by combination of basic modules. The problems of solving inverse kinematics, managing kinematic singularity and kinematic redundancy are avoided. The modular approach is robust against contact and physical interaction, which makes it particularly effective for contact-rich manipulation. Each kinematic module can be learned by Imitation Learning, thereby resulting in a modular learning strategy for robot control. The theoretical foundations and their real robot implementation are presented. Using a KUKA LBR iiwa14 robot, three tasks were considered: (1) generating a sequence of discrete movements, (2) generating a combination of discrete and rhythmic movements, and (3) a drawing and erasing task. The results obtained indicate that this modular approach has the potential to simplify the generation of a diverse range of robot actions.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.