With the increasing importance of data in the modern business environment, effective data man-agement and protection strategies are gaining increasing research attention. Data protection in a cloud environment is crucial for safeguarding information assets and maintaining sustainable services. This study introduces a system structure that integrates Kubernetes management plat-forms with backup and restoration tools. This system is designed to immediately detect disasters and automatically recover applications from another kubernetes cluster. The experimental results show that this system executes the restoration process within 15 s without human intervention, enabling rapid recovery. This, in turn, significantly reduces the potential for delays and errors compared with manual recovery processes, thereby enhancing data management and recovery ef-ficiency in cloud environments. Moreover, our research model predicts the CPU utilization of the cluster using Long Short-Term Memory (LSTM). The necessity of scheduling through this predict is made clearer through comparison with experiments without scheduling, demonstrating its ability to prevent performance degradation. This research highlights the efficiency and necessity of automatic recovery systems in cloud environments, setting a new direction for future research.
Our paper addresses the challenge of inferring causal effects in social network data, characterized by complex interdependencies among individuals resulting in challenges such as non-independence of units, interference (where a unit's outcome is affected by neighbors' treatments), and introduction of additional confounding factors from neighboring units. We propose a novel methodology combining graph neural networks and double machine learning, enabling accurate and efficient estimation of direct and peer effects using a single observational social network. Our approach utilizes graph isomorphism networks in conjunction with double machine learning to effectively adjust for network confounders and consistently estimate the desired causal effects. We demonstrate that our estimator is both asymptotically normal and semiparametrically efficient. A comprehensive evaluation against four state-of-the-art baseline methods using three semi-synthetic social network datasets reveals our method's on-par or superior efficacy in precise causal effect estimation. Further, we illustrate the practical application of our method through a case study that investigates the impact of Self-Help Group participation on financial risk tolerance. The results indicate a significant positive direct effect, underscoring the potential of our approach in social network analysis. Additionally, we explore the effects of network sparsity on estimation performance.
Despite the importance of denoising in modern machine learning and ample empirical work on supervised denoising, its theoretical understanding is still relatively scarce. One concern about studying supervised denoising is that one might not always have noiseless training data from the test distribution. It is more reasonable to have access to noiseless training data from a different dataset than the test dataset. Motivated by this, we study supervised denoising and noisy-input regression under distribution shift. We add three considerations to increase the applicability of our theoretical insights to real-life data and modern machine learning. First, while most past theoretical work assumes that the data covariance matrix is full-rank and well-conditioned, empirical studies have shown that real-life data is approximately low-rank. Thus, we assume that our data matrices are low-rank. Second, we drop independence assumptions on our data. Third, the rise in computational power and dimensionality of data have made it important to study non-classical regimes of learning. Thus, we work in the non-classical proportional regime, where data dimension $d$ and number of samples $N$ grow as $d/N = c + o(1)$. For this setting, we derive data-dependent, instance specific expressions for the test error for both denoising and noisy-input regression, and study when overfitting the noise is benign, tempered or catastrophic. We show that the test error exhibits double descent under general distribution shift, providing insights for data augmentation and the role of noise as an implicit regularizer. We also perform experiments using real-life data, where we match the theoretical predictions with under 1\% MSE error for low-rank data.
This paper investigates a novel hybrid worker recruitment problem where the mobile crowd sensing and computing (MCSC) platform employs workers to serve MCSC tasks with diverse quality requirements and budget constraints, under uncertainties in workers' participation and their local workloads.We propose a hybrid worker recruitment framework consisting of offline and online trading modes. The former enables the platform to overbook long-term workers (services) to cope with dynamic service supply via signing contracts in advance, which is formulated as 0-1 integer linear programming (ILP) with probabilistic constraints of service quality and budget.Besides, motivated by the existing uncertainties which may render long-term workers fail to meet the service quality requirement of each task, we augment our methodology with an online temporary worker recruitment scheme as a backup Plan B to support seamless service provisioning for MCSC tasks, which also represents a 0-1 ILP problem. To tackle these problems which are proved to be NP-hard, we develop three algorithms, namely, i) exhaustive searching, ii) unique index-based stochastic searching with risk-aware filter constraint, iii) geometric programming-based successive convex algorithm, which achieve the optimal or sub-optimal solutions. Experimental results demonstrate our effectiveness in terms of service quality, time efficiency, etc.
As artificial intelligence continues its unprecedented global expansion, accompanied by a proliferation of benefits, an increasing apprehension about the privacy and security implications of AI-enabled systems emerges. The pivotal question of effectively controlling AI development at both jurisdictional and organizational levels has become a prominent theme in contemporary discourse. While the European Parliament and Council have taken a decisive step by reaching a political agreement on the EU AI Act, the first comprehensive AI law, organizations still find it challenging to adapt to the fast-evolving AI landscape, lacking a universal tool for evaluating the privacy and security dimensions of their AI models and systems. In response to this critical challenge, this study conducts a systematic literature review spanning the years 2020 to 2023, with a primary focus on establishing a unified definition of key concepts in AI Ethics, particularly emphasizing the domains of privacy and security. Through the synthesis of knowledge extracted from the SLR, this study presents a conceptual framework tailored for privacy- and security-aware AI systems. This framework is designed to assist diverse stakeholders, including organizations, academic institutions, and governmental bodies, in both the development and critical assessment of AI systems. Essentially, the proposed framework serves as a guide for ethical decision-making, fostering an environment wherein AI is developed and utilized with a strong commitment to ethical principles. In addition, the study unravels the key issues and challenges surrounding the privacy and security dimensions, delineating promising avenues for future research, thereby contributing to the ongoing dialogue on the globalization and democratization of AI ethics.
This study explores the critical role of open government data (OGD) portals in fostering transparency and collaboration between diverse stakeholders. Recognizing the challenges of usability, communication with diverse populations, and strategic value creation, this paper develops an integrated framework for evaluating OGD portal effectiveness that accommodates user diversity (regardless of their data literacy and language), evaluates collaboration and participation, and the ability of users to explore and understand the data provided through them. The framework is validated by applying it to 33 national portals across European Union and Gulf Cooperation Council (GCC) countries, as a result of which we rank OGD portals, identify some good practices that lower-performing portals can learn from, and common shortcomings. Notably, the study unveils the competitive and innovative nature of GCC OGD portals, pinpointing specific improvement areas such as multilingual support and data understandability. The findings underscore the growing trend of exposing data quality metrics and advocate for enhanced two-way communication channels between users and portal representatives. Overall, the study contributes to accelerating the development of user-friendly, collaborative, and sustainable OGD portals while addressing gaps identified in previous research.
Sociotechnical research increasingly includes the social sub-networks that emerge from large-scale sociotechnical infrastructure, including the infrastructure for building open source software. This paper addresses these numerous sub-networks as advantageous for researchers. It provides a methodological synthesis focusing on how researchers can best span adjacent social sub-networks during engaged field research. Specifically, we describe practices and artifacts that aid movement from one social subsystem within a more extensive technical infrastructure to another. To surface the importance of spanning sub-networks, we incorporate a discussion of social capital and the role of technical infrastructure in its development for sociotechnical researchers. We then characterize a five-step process for spanning social sub-networks during engaged field research: commitment, context mapping, jargon competence, returning value, and bridging. We then present our experience studying corporate open source software projects and the role of that experience in accelerating our work in open source scientific software research as described through the lens of bridging social capital. Based on our analysis, we offer recommendations for engaging in fieldwork in adjacent social sub-networks that share a technical context and discussion of how the relationship between social and technically acquired social capital is a missing but critical methodological dimension for research on large-scale sociotechnical research.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.