亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A family of closed simple (i.e., Jordan) curves is $m$-intersecting if any pair of its curves have at most $m$ points of common intersection. We say that a pair of such curves touch if they intersect at a single point of common tangency. In this work we show that any $m$-intersecting family of $n$ Jordan curves in general position in the plane contains $O\left(n^{2-\frac{1}{3m+15}}\right)$ touching pairs Furthermore, we use the string separator theorem of Fox and Pach in order to establish the following Crossing Lemma for contact graphs of Jordan curves: Let $\Gamma$ be an $m$-intersecting family of closed Jordan curves in general position in the plane with exactly $T=\Omega(n)$ touching pairs of curves, then the curves of $\Gamma$ determine $\Omega\left(T\cdot\left(\frac{T}{n}\right)^{\frac{1}{9m+45}}\right)$ intersection points. This extends the similar bounds that were previously established by Salazar for the special case of pairwise intersecting (and $m$-intersecting) curves. Specializing to the case at hand, this substantially improves the bounds that were recently derived by Pach, Rubin and Tardos for arbitrary families of Jordan curves.

相關內容

兩人親(qin)密社(she)交(jiao)應用,官網:

In EUROCRYPT 2018, Cid $et\;al.$ introduced a new concept on the cryptographic property of S-boxes to evaluate the subtleties of boomerang-style attacks. This concept was named as boomerang connectivity table (BCT for short) . For a power function, the distribution of BCT can be directly determined by its boomerang spectrum. In this paper, we investigate the boomerang spectra of two classes power functions over even characteristic finite fields via their differential spectra. The boomerang spectrum of the power function $ {x^{{2^{m+1}} - 1}} $ over $ {\mathbb{F}_{{2^{2m}}}} $ is determined, where $2^{m+1}-1$ is a kind of Niho exponent. The boomerang spectrum of the Gold function $G(x)=x^{2^t+1}$ over $ {\mathbb{F}_{{2^n}}} $ is also determined. It is shown that the Gold function has two-valued boomerang spectrum.

We prove a bound of $O( k (n+m)\log^{d-1})$ on the number of incidences between $n$ points and $m$ axis parallel boxes in $\mathbb{R}^d$, if no $k$ boxes contain $k$ common points. That is, the incidence graph between the points and the boxes does not contain $K_{k,k}$ as a subgraph. This new bound improves over previous work by a factor of $\log^d n$, for $d >2$. We also study other variants of the problem. For halfspaces, using shallow cuttings, we get a near linear bound in two and three dimensions. Finally, we present near linear bound for the case of shapes in the plane with low union complexity (e.g. fat triangles).

Safe Policy Improvement (SPI) aims at provable guarantees that a learned policy is at least approximately as good as a given baseline policy. Building on SPI with Soft Baseline Bootstrapping (Soft-SPIBB) by Nadjahi et al., we identify theoretical issues in their approach, provide a corrected theory, and derive a new algorithm that is provably safe on finite Markov Decision Processes (MDP). Additionally, we provide a heuristic algorithm that exhibits the best performance among many state of the art SPI algorithms on two different benchmarks. Furthermore, we introduce a taxonomy of SPI algorithms and empirically show an interesting property of two classes of SPI algorithms: while the mean performance of algorithms that incorporate the uncertainty as a penalty on the action-value is higher, actively restricting the set of policies more consistently produces good policies and is, thus, safer.

One of the main features of interest in analysing the light curves of stars is the underlying periodic behaviour. The corresponding observations are a complex type of time series with unequally spaced time points and are sometimes accompanied by varying measures of accuracy. The main tools for analysing these type of data rely on the periodogram-like functions, constructed with a desired feature so that the peaks indicate the presence of a potential period. In this paper, we explore a particular periodogram for the irregularly observed time series data, similar to Thieler et. al. (2013). We identify the potential periods at the appropriate peaks and more importantly with a quantifiable uncertainty. Our approach is shown to easily generalise to non-parametric methods including a weighted Gaussian process regression periodogram. We also extend this approach to correlated background noise. The proposed method for period detection relies on a test based on quadratic forms with normally distributed components. We implement the saddlepoint approximation, as a faster and more accurate alternative to the simulation-based methods that are currently used. The power analysis of the testing methodology is reported together with applications using light curves from the Hunting Outbursting Young Stars citizen science project.

In this paper, we are interested in the performance of a variable-length stop-feedback (VLSF) code with $m$ optimal decoding times for the binary-input additive white Gaussian noise (BI-AWGN) channel. We first develop tight approximations on the tail probability of length-$n$ cumulative information density. Building on the work of Yavas \emph{et al.}, we formulate the problem of minimizing the upper bound on average blocklength subject to the error probability, minimum gap, and integer constraints. For this integer program, we show that for a given error constraint, a VLSF code that decodes after every symbol attains the maximum achievable rate. We also present a greedy algorithm that yields possibly suboptimal integer decoding times. By allowing a positive real-valued decoding time, we develop the gap-constrained sequential differential optimization (SDO) procedure. Numerical evaluation shows that the gap-constrained SDO can provide a good estimate on achievable rate of VLSF codes with $m$ optimal decoding times and that a finite $m$ suffices to attain Polyanskiy's bound for VLSF codes with $m = \infty$.

We consider the allocation of $m$ balls into $n$ bins with incomplete information. In the classical Two-Choice process a ball first queries the load of two randomly chosen bins and is then placed in the least loaded bin. In our setting, each ball also samples two random bins but can only estimate a bin's load by sending binary queries of the form "Is the load at least the median?" or "Is the load at least 100?". For the lightly loaded case $m=O(n)$, Feldheim and Gurel-Gurevich (2021) showed that with one query it is possible to achieve a maximum load of $O(\sqrt{\log n/\log \log n})$, and posed the question whether a maximum load of $m/n+O(\sqrt{\log n/\log \log n})$ is possible for any $m = \Omega(n)$. In this work, we resolve this open problem by proving a lower bound of $m/n+\Omega( \sqrt{\log n})$ for a fixed $m=\Theta(n \sqrt{\log n})$, and a lower bound of $m/n+\Omega(\log n/\log \log n)$ for some $m$ depending on the used strategy. We complement this negative result by proving a positive result for multiple queries. In particular, we show that with only two binary queries per chosen bin, there is an oblivious strategy which ensures a maximum load of $m/n+O(\sqrt{\log n})$ for any $m \geq 1$. Further, for any number of $k = O(\log \log n)$ binary queries, the upper bound on the maximum load improves to $m/n + O(k(\log n)^{1/k})$ for any $m \geq 1$. Further, this result for $k$ queries implies (i) new bounds for the $(1+\beta)$-process introduced by Peres et al (2015), (ii) new bounds for the graphical balanced allocation process on dense expander graphs, and (iii) the bound of $m/n+O(\log \log n)$ on the maximum load achieved by the Two-Choice process, including the heavily loaded case $m=\Omega(n)$ derived by Berenbrink et al. (2006). One novel aspect of our proofs is the use of multiple super-exponential potential functions, which might be of use in future work.

In network analysis, how to estimate the number of communities $K$ is a fundamental problem. We consider a broad setting where we allow severe degree heterogeneity and a wide range of sparsity levels, and propose Stepwise Goodness-of-Fit (StGoF) as a new approach. This is a stepwise algorithm, where for $m = 1, 2, \ldots$, we alternately use a community detection step and a goodness-of-fit (GoF) step. We adapt SCORE \cite{SCORE} for community detection, and propose a new GoF metric. We show that at step $m$, the GoF metric diverges to $\infty$ in probability for all $m < K$ and converges to $N(0,1)$ if $m = K$. This gives rise to a consistent estimate for $K$. Also, we discover the right way to define the signal-to-noise ratio (SNR) for our problem and show that consistent estimates for $K$ do not exist if $\mathrm{SNR} \goto 0$, and StGoF is uniformly consistent for $K$ if $\mathrm{SNR} \goto \infty$. Therefore, StGoF achieves the optimal phase transition. Similar stepwise methods (e.g., \cite{wang2017likelihood, ma2018determining}) are known to face analytical challenges. We overcome the challenges by using a different stepwise scheme in StGoF and by deriving sharp results that are not available before. The key to our analysis is to show that SCORE has the {\it Non-Splitting Property (NSP)}. Primarily due to a non-tractable rotation of eigenvectors dictated by the Davis-Kahan $\sin(\theta)$ theorem, the NSP is non-trivial to prove and requires new techniques we develop.

We study the problem of efficiently computing on encoded data. More specifically, we study the question of low-bandwidth computation of functions $F:\mathbb{F}^k \to \mathbb{F}$ of some data $x \in \mathbb{F}^k$, given access to an encoding $c \in \mathbb{F}^n$ of $x$ under an error correcting code. In our model -- relevant in distributed storage, distributed computation and secret sharing -- each symbol of $c$ is held by a different party, and we aim to minimize the total amount of information downloaded from each party in order to compute $F(x)$. Special cases of this problem have arisen in several domains, and we believe that it is fruitful to study this problem in generality. Our main result is a low-bandwidth scheme to compute linear functions for Reed-Solomon codes, even in the presence of erasures. More precisely, let $\epsilon > 0$ and let $\mathcal{C}: \mathbb{F}^k \to \mathbb{F}^n$ be a full-length Reed-Solomon code of rate $1 - \epsilon$ over a field $\mathbb{F}$ with constant characteristic. For any $\gamma \in [0, \epsilon)$, our scheme can compute any linear function $F(x)$ given access to any $(1 - \gamma)$-fraction of the symbols of $\mathcal{C}(x)$, with download bandwidth $O(n/(\epsilon - \gamma))$ bits. In contrast, the naive scheme that involves reconstructing the data $x$ and then computing $F(x)$ uses $\Theta(n \log n)$ bits. Our scheme has applications in distributed storage, coded computation, and homomorphic secret sharing.

We consider the matrix least squares problem of the form $\| \mathbf{A} \mathbf{X}-\mathbf{B} \|_F^2$ where the design matrix $\mathbf{A} \in \mathbb{R}^{N \times r}$ is tall and skinny with $N \gg r$. We propose to create a sketched version $\| \tilde{\mathbf{A}}\mathbf{X}-\tilde{\mathbf{B}} \|_F^2$ where the sketched matrices $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{B}}$ contain weighted subsets of the rows of $\mathbf{A}$ and $\mathbf{B}$, respectively. The subset of rows is determined via random sampling based on leverage score estimates for each row. We say that the sketched problem is $\epsilon$-accurate if its solution $\tilde{\mathbf{X}}_{\rm \text{opt}} = \text{argmin } \| \tilde{\mathbf{A}}\mathbf{X}-\tilde{\mathbf{B}} \|_F^2$ satisfies $\|\mathbf{A}\tilde{\mathbf{X}}_{\rm \text{opt}}-\mathbf{B} \|_F^2 \leq (1+\epsilon) \min \| \mathbf{A}\mathbf{X}-\mathbf{B} \|_F^2$ with high probability. We prove that the number of samples required for an $\epsilon$-accurate solution is $O(r/(\beta \epsilon))$ where $\beta \in (0,1]$ is a measure of the quality of the leverage score estimates.

Escaping saddle points is a central research topic in nonconvex optimization. In this paper, we propose a simple gradient-based algorithm such that for a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$, it outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}(\log n/\epsilon^{1.75})$ iterations. Compared to the previous state-of-the-art algorithms by Jin et al. with $\tilde{O}((\log n)^{4}/\epsilon^{2})$ or $\tilde{O}((\log n)^{6}/\epsilon^{1.75})$ iterations, our algorithm is polynomially better in terms of $\log n$ and matches their complexities in terms of $1/\epsilon$. For the stochastic setting, our algorithm outputs an $\epsilon$-approximate second-order stationary point in $\tilde{O}((\log n)^{2}/\epsilon^{4})$ iterations. Technically, our main contribution is an idea of implementing a robust Hessian power method using only gradients, which can find negative curvature near saddle points and achieve the polynomial speedup in $\log n$ compared to the perturbed gradient descent methods. Finally, we also perform numerical experiments that support our results.

北京阿比特科技有限公司