亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distributional drift detection is important in medical applications as it helps ensure the accuracy and reliability of models by identifying changes in the underlying data distribution that could affect diagnostic or treatment decisions. However, current methods have limitations in detecting drift; for example, the inclusion of abnormal datasets can lead to unfair comparisons. This paper presents an accurate and sensitive approach to detect distributional drift in CT-scan medical images by leveraging data-sketching and fine-tuning techniques. We developed a robust baseline library model for real-time anomaly detection, allowing for efficient comparison of incoming images and identification of anomalies. Additionally, we fine-tuned a vision transformer pre-trained model to extract relevant features using breast cancer images as an example, significantly enhancing model accuracy to 99.11\%. Combining with data-sketches and fine-tuning, our feature extraction evaluation demonstrated that cosine similarity scores between similar datasets provide greater improvements, from around 50\% increased to 100\%. Finally, the sensitivity evaluation shows that our solutions are highly sensitive to even 1\% salt-and-pepper and speckle noise, and it is not sensitive to lighting noise (e.g., lighting conditions have no impact on data drift). The proposed methods offer a scalable and reliable solution for maintaining the accuracy of diagnostic models in dynamic clinical environments.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Neural Networks · Networking · 可理解性 · Learning ·
2024 年 9 月 27 日

SimCLR is one of the most popular contrastive learning methods for vision tasks. It pre-trains deep neural networks based on a large amount of unlabeled data by teaching the model to distinguish between positive and negative pairs of augmented images. It is believed that SimCLR can pre-train a deep neural network to learn efficient representations that can lead to a better performance of future supervised fine-tuning. Despite its effectiveness, our theoretical understanding of the underlying mechanisms of SimCLR is still limited. In this paper, we theoretically introduce a case study of the SimCLR method. Specifically, we consider training a two-layer convolutional neural network (CNN) to learn a toy image data model. We show that, under certain conditions on the number of labeled data, SimCLR pre-training combined with supervised fine-tuning achieves almost optimal test loss. Notably, the label complexity for SimCLR pre-training is far less demanding compared to direct training on supervised data. Our analysis sheds light on the benefits of SimCLR in learning with fewer labels.

In the era of rapidly advancing medical technologies, the segmentation of medical data has become inevitable, necessitating the development of privacy preserving machine learning algorithms that can train on distributed data. Consolidating sensitive medical data is not always an option particularly due to the stringent privacy regulations imposed by the Health Insurance Portability and Accountability Act (HIPAA). In this paper, I introduce a HIPAA compliant framework that can train from distributed data. I then propose a multimodal vertical federated model for Alzheimer's Disease (AD) detection, a serious neurodegenerative condition that can cause dementia, severely impairing brain function and hindering simple tasks, especially without preventative care. This vertical federated learning (VFL) model offers a distributed architecture that enables collaborative learning across diverse sources of medical data while respecting privacy constraints imposed by HIPAA. The VFL architecture proposed herein offers a novel distributed architecture, enabling collaborative learning across diverse sources of medical data while respecting statutory privacy constraints. By leveraging multiple modalities of data, the robustness and accuracy of AD detection can be enhanced. This model not only contributes to the advancement of federated learning techniques but also holds promise for overcoming the hurdles posed by data segmentation in medical research.

Machine Learning (ML) models have gained popularity in medical imaging analysis given their expert level performance in many medical domains. To enhance the trustworthiness, acceptance, and regulatory compliance of medical imaging models and to facilitate their integration into clinical settings, we review and categorise methods for ensuring ML reliability, both during development and throughout the model's lifespan. Specifically, we provide an overview of methods assessing models' inner-workings regarding bias encoding and detection of data drift for disease classification models. Additionally, to evaluate the severity in case of a significant drift, we provide an overview of the methods developed for classifier accuracy estimation in case of no access to ground truth labels. This should enable practitioners to implement methods ensuring reliable ML deployment and consistent prediction performance over time.

Cognitive modeling commonly relies on asking participants to complete a battery of varied tests in order to estimate attention, working memory, and other latent variables. In many cases, these tests result in highly variable observation models. A near-ubiquitous approach is to repeat many observations for each test independently, resulting in a distribution over the outcomes from each test given to each subject. Latent variable models (LVMs), if employed, are only added after data collection. In this paper, we explore the usage of LVMs to enable learning across many correlated variables simultaneously. We extend LVMs to the setting where observed data for each subject are a series of observations from many different distributions, rather than simple vectors to be reconstructed. By embedding test battery results for individuals in a latent space that is trained jointly across a population, we can leverage correlations both between disparate test data for a single participant and between multiple participants. We then propose an active learning framework that leverages this model to conduct more efficient cognitive test batteries. We validate our approach by demonstrating with real-time data acquisition that it performs comparably to conventional methods in making item-level predictions with fewer test items.

The application of large language models (LLMs) in healthcare has gained significant attention due to their ability to process complex medical data and provide insights for clinical decision-making. These models have demonstrated substantial capabilities in understanding and generating natural language, which is crucial for medical documentation, diagnostics, and patient interaction. This review examines the trajectory of language models from their early stages to the current state-of-the-art LLMs, highlighting their strengths in healthcare applications and discussing challenges such as data privacy, bias, and ethical considerations. The potential of LLMs to enhance healthcare delivery is explored, alongside the necessary steps to ensure their ethical and effective integration into medical practice.

In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.

To substantially enhance robot intelligence, there is a pressing need to develop a large model that enables general-purpose robots to proficiently undertake a broad spectrum of manipulation tasks, akin to the versatile task-planning ability exhibited by LLMs. The vast diversity in objects, robots, and manipulation tasks presents huge challenges. Our work introduces a comprehensive framework to develop a foundation model for general robotic manipulation that formalizes a manipulation task as contact synthesis. Specifically, our model takes as input object and robot manipulator point clouds, object physical attributes, target motions, and manipulation region masks. It outputs contact points on the object and associated contact forces or post-contact motions for robots to achieve the desired manipulation task. We perform extensive experiments both in the simulation and real-world settings, manipulating articulated rigid objects, rigid objects, and deformable objects that vary in dimensionality, ranging from one-dimensional objects like ropes to two-dimensional objects like cloth and extending to three-dimensional objects such as plasticine. Our model achieves average success rates of around 90\%. Supplementary materials and videos are available on our project website at //manifoundationmodel.github.io/.

While large language models (LLMs) have shown promise for medical question answering, there is limited work focused on tropical and infectious disease-specific exploration. We build on an opensource tropical and infectious diseases (TRINDs) dataset, expanding it to include demographic and semantic clinical and consumer augmentations yielding 11000+ prompts. We evaluate LLM performance on these, comparing generalist and medical LLMs, as well as LLM outcomes to human experts. We demonstrate through systematic experimentation, the benefit of contextual information such as demographics, location, gender, risk factors for optimal LLM response. Finally we develop a prototype of TRINDs-LM, a research tool that provides a playground to navigate how context impacts LLM outputs for health.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司