亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present W.A.L.T, a transformer-based approach for photorealistic video generation via diffusion modeling. Our approach has two key design decisions. First, we use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities. Second, for memory and training efficiency, we use a window attention architecture tailored for joint spatial and spatiotemporal generative modeling. Taken together these design decisions enable us to achieve state-of-the-art performance on established video (UCF-101 and Kinetics-600) and image (ImageNet) generation benchmarks without using classifier free guidance. Finally, we also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of $512 \times 896$ resolution at $8$ frames per second.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 相互獨立的 · 表示 · 離散化 · 多峰值 ·
2024 年 1 月 30 日

While traditional video representations are organized around discrete image frames, event-based video is a new paradigm that forgoes image frames altogether. Rather, pixel samples are temporally asynchronous and independent of one another. Until now, researchers have lacked a cohesive software framework for exploring the representation, compression, and applications of event-based video. I present the AD$\Delta$ER software suite to fill this gap. This framework includes utilities for transcoding framed and multimodal event-based video sources to a common representation, rate control mechanisms, lossy compression, application support, and an interactive GUI for transcoding and playback. In this paper, I describe these various software components and their usage.

This paper presents a framework that integrates Large Language Models (LLMs) into translation validation, targeting LLVM compiler transformations where formal verification tools are insufficient. Our framework first utilizes existing formal verification frameworks for translation validation. In this work, we use Alive2, a well-known tool in LLVM compiler verification, as an example. When formal verification frameworks are unable to confirm a transformation's soundness, our framework employs fine-tuned LLMs for prediction. It applies fuzzing to transformations predicted as potentially unsound by the LLMs due to return value or memory inconsistencies, aiming to find counterexamples. In cases where transformations are unsound for other reasons or sound, or if no counterexamples emerge, the framework directly reports these outcomes without further fuzzing. This methodology has shown effectiveness in complex areas like deep-learning accelerator design, where traditional tools struggle.

The Streaming Unmixing and Recognition Transducer (SURT) has recently become a popular framework for continuous, streaming, multi-talker speech recognition (ASR). With advances in architecture, objectives, and mixture simulation methods, it was demonstrated that SURT can be an efficient streaming method for speaker-agnostic transcription of real meetings. In this work, we push this framework further by proposing methods to perform speaker-attributed transcription with SURT, for both short mixtures and long recordings. We achieve this by adding an auxiliary speaker branch to SURT, and synchronizing its label prediction with ASR token prediction through HAT-style blank factorization. In order to ensure consistency in relative speaker labels across different utterance groups in a recording, we propose "speaker prefixing" -- appending each chunk with high-confidence frames of speakers identified in previous chunks, to establish the relative order. We perform extensive ablation experiments on synthetic LibriSpeech mixtures to validate our design choices, and demonstrate the efficacy of our final model on the AMI corpus.

Generative models such as GANs and diffusion models have demonstrated impressive image generation capabilities. Despite these successes, these systems are surprisingly poor at creating images with hands. We propose a novel training framework for generative models that substantially improves the ability of such systems to create hand images. Our approach is to augment the training images with three additional channels that provide annotations to hands in the image. These annotations provide additional structure that coax the generative model to produce higher quality hand images. We demonstrate this approach on two different generative models: a generative adversarial network and a diffusion model. We demonstrate our method both on a new synthetic dataset of hand images and also on real photographs that contain hands. We measure the improved quality of the generated hands through higher confidence in finger joint identification using an off-the-shelf hand detector.

The validation of global climate models is crucial to ensure the accuracy and efficacy of model output. We introduce the spherical convolutional Wasserstein distance to more comprehensively measure differences between climate models and reanalysis data. This new similarity measure accounts for spatial variability using convolutional projections and quantifies local differences in the distribution of climate variables. We apply this method to evaluate the historical model outputs of the Coupled Model Intercomparison Project (CMIP) members by comparing them to observational and reanalysis data products. Additionally, we investigate the progression from CMIP phase 5 to phase 6 and find modest improvements in the phase 6 models regarding their ability to produce realistic climatologies.

The validation of global climate models plays a crucial role in ensuring the accuracy of climatological predictions. However, existing statistical methods for evaluating differences between climate fields often overlook time misalignment and therefore fail to distinguish between sources of variability. To more comprehensively measure differences between climate fields, we introduce a new vector-valued metric, the sliced elastic distance. This new metric simultaneously accounts for spatial and temporal variability while decomposing the total distance into shape differences (amplitude), timing variability (phase), and bias (translation). We compare the sliced elastic distance against a classical metric and a newly developed Wasserstein-based approach through a simulation study. Our results demonstrate that the sliced elastic distance outperforms previous methods by capturing a broader range of features. We then apply our metric to evaluate the historical model outputs of the Coupled Model Intercomparison Project (CMIP) members, focusing on monthly average surface temperatures and monthly total precipitation. By comparing these model outputs with quasi-observational ERA5 Reanalysis data products, we rank the CMIP models and assess their performance. Additionally, we investigate the progression from CMIP phase 5 to phase 6 and find modest improvements in the phase 6 models regarding their ability to produce realistic climate dynamics.

We present Flow-Guided Density Ratio Learning (FDRL), a simple and scalable approach to generative modeling which builds on the stale (time-independent) approximation of the gradient flow of entropy-regularized f-divergences introduced in DGflow. In DGflow, the intractable time-dependent density ratio is approximated by a stale estimator given by a GAN discriminator. This is sufficient in the case of sample refinement, where the source and target distributions of the flow are close to each other. However, this assumption is invalid for generation and a naive application of the stale estimator fails due to the large chasm between the two distributions. FDRL proposes to train a density ratio estimator such that it learns from progressively improving samples during the training process. We show that this simple method alleviates the density chasm problem, allowing FDRL to generate images of dimensions as high as $128\times128$, as well as outperform existing gradient flow baselines on quantitative benchmarks. We also show the flexibility of FDRL with two use cases. First, unconditional FDRL can be easily composed with external classifiers to perform class-conditional generation. Second, FDRL can be directly applied to unpaired image-to-image translation with no modifications needed to the framework. Code is publicly available at //github.com/ajrheng/FDRL.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report 79.0% accuracy on the Kinetics dataset without using any pre-training, largely surpassing the previous best results of this kind. On AVA action detection we achieve a new state-of-the-art of 28.3 mAP. Code will be made publicly available.

北京阿比特科技有限公司