亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diffusion models have risen as a powerful tool in robotics due to their flexibility and multi-modality. While some of these methods effectively address complex problems, they often depend heavily on inference-time obstacle detection and require additional equipment. Addressing these challenges, we present a method that, during inference time, simultaneously generates only reachable goals and plans motions that avoid obstacles, all from a single visual input. Central to our approach is the novel use of a collision-avoiding diffusion kernel for training. Through evaluations against behavior-cloning and classical diffusion models, our framework has proven its robustness. It is particularly effective in multi-modal environments, navigating toward goals and avoiding unreachable ones blocked by obstacles, while ensuring collision avoidance.

相關內容

Sensors are crucial for perception and autonomous operation in robotic vehicles (RV). Unfortunately, RV sensors can be compromised by physical attacks such as sensor tampering or spoofing. In this paper, we present DeLorean, a unified framework for attack detection, attack diagnosis, and recovering RVs from sensor deception attacks (SDA). DeLorean can recover RVs even from strong SDAs in which the adversary targets multiple heterogeneous sensors simultaneously. We propose a novel attack diagnosis technique that inspects the attack-induced errors under SDAs, and identifies the targeted sensors using causal analysis. DeLorean then uses historic state information to selectively reconstruct physical states for compromised sensors, enabling targeted attack recovery under single or multi-sensor SDAs. We evaluate DeLorean on four real and two simulated RVs under SDAs targeting various sensors, and we find that it successfully recovers RVs from SDAs in 93% of the cases.

The manipulation of deformable objects by robotic systems presents a significant challenge due to their complex and infinite-dimensional configuration spaces. This paper introduces a novel approach to Deformable Object Manipulation (DOM) by emphasizing the identification and manipulation of Structures of Interest (SOIs) in deformable fabric bags. We propose a bimanual manipulation framework that leverages a Graph Neural Network (GNN)-based latent dynamics model to succinctly represent and predict the behavior of these SOIs. Our approach involves constructing a graph representation from partial point cloud data of the object and learning the latent dynamics model that effectively captures the essential deformations of the fabric bag within a reduced computational space. By integrating this latent dynamics model with Model Predictive Control (MPC), we empower robotic manipulators to perform precise and stable manipulation tasks focused on the SOIs. We have validated our framework through various empirical experiments demonstrating its efficacy in bimanual manipulation of fabric bags. Our contributions not only address the complexities inherent in DOM but also provide new perspectives and methodologies for enhancing robotic interactions with deformable objects by concentrating on their critical structural elements. Experimental videos can be obtained from //sites.google.com/view/bagbot.

Cell-free massive multi-input multi-output (MIMO) has recently gained much attention for its potential in shaping the landscape of sixth-generation (6G) wireless systems. This paper proposes a hierarchical network architecture tailored for cell-free massive MIMO, seamlessly integrating co-located and distributed antennas. A central base station (CBS), equipped with an antenna array, positions itself near the center of the coverage area, complemented by distributed access points spanning the periphery. The proposed architecture remarkably outperforms conventional cell-free networks, demonstrating superior sum throughput while maintaining a comparable worst-case per-user spectral efficiency. Meanwhile, the implementation cost associated with the fronthaul network is substantially diminished.

Soft growing robots, are a type of robots that are designed to move and adapt to their environment in a similar way to how plants grow and move with potential applications where they could be used to navigate through tight spaces, dangerous terrain, and hard-to-reach areas. This research explores the application of deep reinforcement Q-learning algorithm for facilitating the navigation of the soft growing robots in cluttered environments. The proposed algorithm utilizes the flexibility of the soft robot to adapt and incorporate the interaction between the robot and the environment into the decision-making process. Results from simulations show that the proposed algorithm improves the soft robot's ability to navigate effectively and efficiently in confined spaces. This study presents a promising approach to addressing the challenges faced by growing robots in particular and soft robots general in planning obstacle-aware paths in real-world scenarios.

Modular soft robots have shown higher potential in sophisticated tasks than single-module robots. However, the modular structure incurs the complexity of accurate control and necessitates a control strategy specifically for modular robots. In this paper, we introduce a data collection strategy and a novel and accurate bidirectional LSTM configuration controller for modular soft robots with module number adaptability. Such a controller can control module configurations in robots with different module numbers. Simulation cable-driven robots and real pneumatic robots have been included in experiments to validate the proposed approaches, and we have proven that our controller can be leveraged even with the increase or decrease of module number. This is the first paper that gets inspiration from the physical structure of modular robots and utilizes bidirectional LSTM for module number adaptability. Future work may include a planning method that bridges the task and configuration spaces and the integration of an online controller.

Aggregated HPC resources have rigid allocation systems and programming models which struggle to adapt to diverse and changing workloads. Consequently, HPC systems fail to efficiently use the large pools of unused memory and increase the utilization of idle computing resources. Prior work attempted to increase the throughput and efficiency of supercomputing systems through workload co-location and resource disaggregation. However, these methods fall short of providing a solution that can be applied to existing systems without major hardware modifications and performance losses. In this paper, we improve the utilization of supercomputers by employing the new cloud paradigm of serverless computing. We show how serverless functions provide fine-grained access to the resources of batch-managed cluster nodes. We present an HPC-oriented Function-as-a-Service (FaaS) that satisfies the requirements of high-performance applications. We demonstrate a \emph{software resource disaggregation} approach where placing functions on unallocated and underutilized nodes allows idle cores and accelerators to be utilized while retaining near-native performance.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

We consider the task of weakly supervised one-shot detection. In this task, we attempt to perform a detection task over a set of unseen classes, when training only using weak binary labels that indicate the existence of a class instance in a given example. The model is conditioned on a single exemplar of an unseen class and a target example that may or may not contain an instance of the same class as the exemplar. A similarity map is computed by using a Siamese neural network to map the exemplar and regions of the target example to a latent representation space and then computing cosine similarity scores between representations. An attention mechanism weights different regions in the target example, and enables learning of the one-shot detection task using the weaker labels alone. The model can be applied to detection tasks from different domains, including computer vision object detection. We evaluate our attention Siamese networks on a one-shot detection task from the audio domain, where it detects audio keywords in spoken utterances. Our model considerably outperforms a baseline approach and yields a 42.6% average precision for detection across 10 unseen classes. Moreover, architectural developments from computer vision object detection models such as a region proposal network can be incorporated into the model architecture, and results show that performance is expected to improve by doing so.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司