亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce and analyze a lowest-order locking-free weak Galerkin (WG) finite element scheme for the grad-div formulation of linear elasticity problems. The scheme uses linear functions in the interior of mesh elements and constants on edges (2D) or faces (3D), respectively, to approximate the displacement. An $H(div)$-conforming displacement reconstruction operator is employed to modify test functions in the right-hand side of the discrete form, in order to eliminate the dependence of the $Lam\acute{e}$ parameter $\lambda$ in error estimates, i.e., making the scheme locking-free. The method works without requiring $\lambda \|\nabla\cdot \mathbf{u}\|_1$ to be bounded. We prove optimal error estimates, independent of $\lambda$, in both the $H^1$-norm and the $L^2$-norm. Numerical experiments validate that the method is effective and locking-free.

相關內容

How to identify semantic relations among entities in a document when only a few labeled documents are available? Few-shot document-level relation extraction (FSDLRE) is crucial for addressing the pervasive data scarcity problem in real-world scenarios. Metric-based meta-learning is an effective framework widely adopted for FSDLRE, which constructs class prototypes for classification. However, existing works often struggle to obtain class prototypes with accurate relational semantics: 1) To build prototype for a target relation type, they aggregate the representations of all entity pairs holding that relation, while these entity pairs may also hold other relations, thus disturbing the prototype. 2) They use a set of generic NOTA (none-of-the-above) prototypes across all tasks, neglecting that the NOTA semantics differs in tasks with different target relation types. In this paper, we propose a relation-aware prototype learning method for FSDLRE to strengthen the relational semantics of prototype representations. By judiciously leveraging the relation descriptions and realistic NOTA instances as guidance, our method effectively refines the relation prototypes and generates task-specific NOTA prototypes. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches by average 2.61% $F_1$ across various settings of two FSDLRE benchmarks.

In this paper, the receive generalized spatial modulation (RGSM) scheme with reconfigurable intelligent surfaces (RIS) assistance is proposed. The RIS group controllers change the reflected phases of the RIS elements to achieve the selection of receive antennas and phase shift keying (PSK) modulation, and the amplitudes of the received symbols are adjusted by changing the activation states of the elements to achieve amplitude phase shift keying (APSK) modulation. Compared with the existing RIS-aided receive generalized space shift keying (RIS-RGSSK) scheme, the proposed scheme realizes that the selected antennas respectively receive different modulation symbols, and only adds the process to control the modulated phases and the activation states of elements. The proposed scheme has better bit error rate (BER) performance than the RIS-RGSSK scheme at the same rate. In addition, the results show that for low modulation orders, the proposed scheme will perform better with PSK, while for high modulation order, APSK is better. The proposed scheme is a promising scheme for future wireless communication to achieve high-efficiency.

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at //github.com/EQTPartners/PTEC.

In this paper, we establish a benchmark named HalluQA (Chinese Hallucination Question-Answering) to measure the hallucination phenomenon in Chinese large language models. HalluQA contains 450 meticulously designed adversarial questions, spanning multiple domains, and takes into account Chinese historical culture, customs, and social phenomena. During the construction of HalluQA, we consider two types of hallucinations: imitative falsehoods and factual errors, and we construct adversarial samples based on GLM-130B and ChatGPT. For evaluation, we design an automated evaluation method using GPT-4 to judge whether a model output is hallucinated. We conduct extensive experiments on 24 large language models, including ERNIE-Bot, Baichuan2, ChatGLM, Qwen, SparkDesk and etc. Out of the 24 models, 18 achieved non-hallucination rates lower than 50%. This indicates that HalluQA is highly challenging. We analyze the primary types of hallucinations in different types of models and their causes. Additionally, we discuss which types of hallucinations should be prioritized for different types of models.

In this paper, we describe a spoken Arabic dialect identification (ADI) model for Arabic that consistently outperforms previously published results on two benchmark datasets: ADI-5 and ADI-17. We explore two architectural variations: ResNet and ECAPA-TDNN, coupled with two types of acoustic features: MFCCs and features exratected from the pre-trained self-supervised model UniSpeech-SAT Large, as well as a fusion of all four variants. We find that individually, ECAPA-TDNN network outperforms ResNet, and models with UniSpeech-SAT features outperform models with MFCCs by a large margin. Furthermore, a fusion of all four variants consistently outperforms individual models. Our best models outperform previously reported results on both datasets, with accuracies of 84.7% and 96.9% on ADI-5 and ADI-17, respectively.

We present an implementation of a Web3 platform that leverages the Groth16 Zero-Knowledge Proof schema to verify the validity of questionnaire results within Smart Contracts. Our approach ensures that the answer key of the questionnaire remains undisclosed throughout the verification process, while ensuring that the evaluation is done fairly. To accomplish this, users respond to a series of questions, and their answers are encoded and securely transmitted to a hidden backend. The backend then performs an evaluation of the user's answers, generating the overall result of the questionnaire. Additionally, it generates a Zero-Knowledge Proof, attesting that the answers were appropriately evaluated against a valid set of constraints. Next, the user submits their result along with the proof to a Smart Contract, which verifies their validity and issues a non-fungible token (NFT) as an attestation of the user's test result. In this research, we implemented the Zero-Knowledge functionality using Circom 2 and deployed the Smart Contract using Solidity, thereby showcasing a practical and secure solution for questionnaire validity verification in the context of Smart Contracts.

This paper presents a reconfigurable intelligent sensing surface (RISS) that combines passive and active elements to achieve simultaneous reflection and direction of arrival (DOA) estimation tasks. By utilizing DOA information from the RISS instead of conventional channel estimation, the pilot overhead is reduced and the RISS becomes independent of the hybrid access point (HAP), enabling efficient operation. Specifically, the RISS autonomously estimates the DOA of uplink signals from single-antenna users and reflects them using the HAP's slowly varying DOA information. During downlink transmission, it updates the HAP's DOA information and designs the reflection phase of energy signals based on the latest user DOA information. The paper includes a comprehensive performance analysis, covering system design, protocol details, receiving performance, and RISS deployment suggestions. We derive a closed-form expression to analyze system performance under DOA errors, and calculate the statistical distribution of user received energy using the moment-matching technique. We provide a recommended transmit power to meet a specified outage probability and energy threshold. Numerical results demonstrate that the proposed system outperforms the conventional counterpart by 2.3 dB and 4.7 dB for Rician factors $\kappa_h=\kappa_G=1$ and $\kappa_h=\kappa_G=10$, respectively.

This paper provides norm-based generalization bounds for the Transformer architecture that do not depend on the input sequence length. We employ a covering number based approach to prove our bounds. We use three novel covering number bounds for the function class of bounded linear transformations to upper bound the Rademacher complexity of the Transformer. Furthermore, we show this generalization bound applies to the common Transformer training technique of masking and then predicting the masked word. We also run a simulated study on a sparse majority data set that empirically validates our theoretical findings.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司