亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a nonprehensile manipulation task in which a mobile manipulator must balance objects on its end effector without grasping them -- known as the waiter's problem -- and move to a desired location while avoiding static and dynamic obstacles. In constrast to existing approaches, our focus is on fast online planning in response to new and changing environments. Our main contribution is a whole-body constrained model predictive controller (MPC) for a mobile manipulator that balances objects and avoids collisions. Furthermore, we propose planning using the minimum statically-feasible friction coefficients, which provides robustness to frictional uncertainty and other force disturbances while also substantially reducing the compute time required to update the MPC policy. Simulations and hardware experiments on a velocity-controlled mobile manipulator with up to seven balanced objects, stacked objects, and various obstacles show that our approach can handle a variety of conditions that have not been previously demonstrated, with end effector speeds and accelerations up to 2.0 m/s and 7.9 m/s$^2$, respectively. Notably, we demonstrate a projectile avoidance task in which the robot avoids a thrown ball while balancing a tall bottle.

相關內容

Loading of shipping containers for dairy products often includes a press-fit task, which involves manually stacking milk cartons in a container without using pallets or packaging. Automating this task with a mobile manipulator can reduce worker strain, and also enhance the efficiency and safety of the container loading process. This paper proposes an approach called Adaptive Compliant Control with Integrated Failure Recovery (ACCIFR), which enables a mobile manipulator to reliably perform the press-fit task. We base the approach on a demonstration learning-based compliant control framework, such that we integrate a monitoring and failure recovery mechanism for successful task execution. Concretely, we monitor the execution through distance and force feedback, detect collisions while the robot is performing the press-fit task, and use wrench measurements to classify the direction of collision; this information informs the subsequent recovery process. We evaluate the method on a miniature container setup, considering variations in the (i) starting position of the end effector, (ii) goal configuration, and (iii) object grasping position. The results demonstrate that the proposed approach outperforms the baseline demonstration-based learning framework regarding adaptability to environmental variations and the ability to recover from collision failures, making it a promising solution for practical press-fit applications.

In this paper, we propose a safety-critical controller based on time-varying control barrier functions (CBFs) for a robot with an unicycle model in the continuous-time domain to achieve navigation and dynamic collision avoidance. Unlike previous works, our proposed approach can control both linear and angular velocity to avoid collision with obstacles, overcoming the limitation of confined control performance due to the lack of control variable. To ensure that the robot reaches its destination, we also design a control Lyapunov function (CLF). Our safety-critical controller is formulated as a quadratic program (QP) optimization problem that incorporates CLF and CBFs as constraints, enabling real-time application for navigation and dynamic collision avoidance. Numerical simulations are conducted to verify the effectiveness of our proposed approach.

We study reward poisoning attacks on online deep reinforcement learning (DRL), where the attacker is oblivious to the learning algorithm used by the agent and the dynamics of the environment. We demonstrate the intrinsic vulnerability of state-of-the-art DRL algorithms by designing a general, black-box reward poisoning framework called adversarial MDP attacks. We instantiate our framework to construct two new attacks which only corrupt the rewards for a small fraction of the total training timesteps and make the agent learn a low-performing policy. We provide a theoretical analysis of the efficiency of our attack and perform an extensive empirical evaluation. Our results show that our attacks efficiently poison agents learning in several popular classical control and MuJoCo environments with a variety of state-of-the-art DRL algorithms, such as DQN, PPO, SAC, etc.

Breaking safety constraints in control systems can lead to potential risks, resulting in unexpected costs or catastrophic damage. Nevertheless, uncertainty is ubiquitous, even among similar tasks. In this paper, we develop a novel adaptive safe control framework that integrates meta learning, Bayesian models, and control barrier function (CBF) method. Specifically, with the help of CBF method, we learn the inherent and external uncertainties by a unified adaptive Bayesian linear regression (ABLR) model, which consists of a forward neural network (NN) and a Bayesian output layer. Meta learning techniques are leveraged to pre-train the NN weights and priors of the ABLR model using data collected from historical similar tasks. For a new control task, we refine the meta-learned models using a few samples, and introduce pessimistic confidence bounds into CBF constraints to ensure safe control. Moreover, we provide theoretical criteria to guarantee probabilistic safety during the control processes. To validate our approach, we conduct comparative experiments in various obstacle avoidance scenarios. The results demonstrate that our algorithm significantly improves the Bayesian model-based CBF method, and is capable for efficient safe exploration even with multiple uncertain constraints.

In this paper we consider online distributed learning problems. Online distributed learning refers to the process of training learning models on distributed data sources. In our setting a set of agents need to cooperatively train a learning model from streaming data. Differently from federated learning, the proposed approach does not rely on a central server but only on peer-to-peer communications among the agents. This approach is often used in scenarios where data cannot be moved to a centralized location due to privacy, security, or cost reasons. In order to overcome the absence of a central server, we propose a distributed algorithm that relies on a quantized, finite-time coordination protocol to aggregate the locally trained models. Furthermore, our algorithm allows for the use of stochastic gradients during local training. Stochastic gradients are computed using a randomly sampled subset of the local training data, which makes the proposed algorithm more efficient and scalable than traditional gradient descent. In our paper, we analyze the performance of the proposed algorithm in terms of the mean distance from the online solution. Finally, we present numerical results for a logistic regression task.

Safety is one of the fundamental challenges in control theory. Recently, multi-step optimal control problems for discrete-time dynamical systems were formulated to enforce stability, while subject to input constraints as well as safety-critical requirements using discrete-time control barrier functions within a model predictive control (MPC) framework. Existing work usually focus on the feasibility or the safety for the optimization problem, and the majority of the existing work restrict the discussions to relative-degree one control barrier functions. Additionally, the real-time computation is challenging when a large horizon is considered in the MPC problem for relative-degree one or high-order control barrier functions. In this paper, we propose a framework that solves the safety-critical MPC problem in an iterative optimization, which is applicable for any relative-degree control barrier functions. In the proposed formulation, the nonlinear system dynamics as well as the safety constraints modeled as discrete-time high-order control barrier functions (DHOCBF) are linearized at each time step. Our formulation is generally valid for any control barrier function with an arbitrary relative-degree. The advantages of fast computational performance with safety guarantee are analyzed and validated with numerical results.

Uncertainty sampling is a prevalent active learning algorithm that queries sequentially the annotations of data samples which the current prediction model is uncertain about. However, the usage of uncertainty sampling has been largely heuristic: (i) There is no consensus on the proper definition of "uncertainty" for a specific task under a specific loss; (ii) There is no theoretical guarantee that prescribes a standard protocol to implement the algorithm, for example, how to handle the sequentially arrived annotated data under the framework of optimization algorithms such as stochastic gradient descent. In this work, we systematically examine uncertainty sampling algorithms under both stream-based and pool-based active learning. We propose a notion of equivalent loss which depends on the used uncertainty measure and the original loss function and establish that an uncertainty sampling algorithm essentially optimizes against such an equivalent loss. The perspective verifies the properness of existing uncertainty measures from two aspects: surrogate property and loss convexity. Furthermore, we propose a new notion for designing uncertainty measures called \textit{loss as uncertainty}. The idea is to use the conditional expected loss given the features as the uncertainty measure. Such an uncertainty measure has nice analytical properties and generality to cover both classification and regression problems, which enable us to provide the first generalization bound for uncertainty sampling algorithms under both stream-based and pool-based settings, in the full generality of the underlying model and problem. Lastly, we establish connections between certain variants of the uncertainty sampling algorithms with risk-sensitive objectives and distributional robustness, which can partly explain the advantage of uncertainty sampling algorithms when the sample size is small.

Deep learning models are susceptible to adversarial samples in white and black-box environments. Although previous studies have shown high attack success rates, coupling DNN models with interpretation models could offer a sense of security when a human expert is involved, who can identify whether a given sample is benign or malicious. However, in white-box environments, interpretable deep learning systems (IDLSes) have been shown to be vulnerable to malicious manipulations. In black-box settings, as access to the components of IDLSes is limited, it becomes more challenging for the adversary to fool the system. In this work, we propose a Query-efficient Score-based black-box attack against IDLSes, QuScore, which requires no knowledge of the target model and its coupled interpretation model. QuScore is based on transfer-based and score-based methods by employing an effective microbial genetic algorithm. Our method is designed to reduce the number of queries necessary to carry out successful attacks, resulting in a more efficient process. By continuously refining the adversarial samples created based on feedback scores from the IDLS, our approach effectively navigates the search space to identify perturbations that can fool the system. We evaluate the attack's effectiveness on four CNN models (Inception, ResNet, VGG, DenseNet) and two interpretation models (CAM, Grad), using both ImageNet and CIFAR datasets. Our results show that the proposed approach is query-efficient with a high attack success rate that can reach between 95% and 100% and transferability with an average success rate of 69% in the ImageNet and CIFAR datasets. Our attack method generates adversarial examples with attribution maps that resemble benign samples. We have also demonstrated that our attack is resilient against various preprocessing defense techniques and can easily be transferred to different DNN models.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

北京阿比特科技有限公司