Gaussian process regression in its most simplified form assumes normal homoscedastic noise and utilizes analytically tractable mean and covariance functions of predictive posterior distribution using Gaussian conditioning. Its hyperparameters are estimated by maximizing the evidence, commonly known as type II maximum likelihood estimation. Unfortunately, Bayesian inference based on Gaussian likelihood is not robust to outliers, which are often present in the observational training data sets. To overcome this problem, we propose a robust process model in the Gaussian process framework with the likelihood of observed data expressed as the Huber probability distribution. The proposed model employs weights based on projection statistics to scale residuals and bound the influence of vertical outliers and bad leverage points on the latent functions estimates while exhibiting a high statistical efficiency at the Gaussian and thick tailed noise distributions. The proposed method is demonstrated by two real world problems and two numerical examples using datasets with additive errors following thick tailed distributions such as Students t, Laplace, and Cauchy distribution.
Statistical analysis of large dataset is a challenge because of the limitation of computing devices memory and excessive computation time. Divide and Conquer (DC) algorithm is an effective solution path, but the DC algorithm has some limitations. Empirical likelihood is an important semiparametric and nonparametric statistical method for parameter estimation and statistical inference, and the estimating equation builds a bridge between empirical likelihood and traditional statistical methods, which makes empirical likelihood widely used in various traditional statistical models. In this paper, we propose a novel approach to address the challenges posed by empirical likelihood with massive data, which called split sample mean empirical likelihood(SSMEL). We show that the SSMEL estimator has the same estimation efficiency as the empirical likelihood estimatior with the full dataset, and maintains the important statistical property of Wilks' theorem, allowing our proposed approach to be used for statistical inference. The effectiveness of the proposed approach is illustrated using simulation studies and real data analysis.
This paper shows that gradient boosting based on symmetric decision trees can be equivalently reformulated as a kernel method that converges to the solution of a certain Kernel Ridge Regression problem. Thus, we obtain the convergence to a Gaussian Process' posterior mean, which, in turn, allows us to easily transform gradient boosting into a sampler from the posterior to provide better knowledge uncertainty estimates through Monte-Carlo estimation of the posterior variance. We show that the proposed sampler allows for better knowledge uncertainty estimates leading to improved out-of-domain detection.
We consider the problem of service hosting where a service provider can dynamically rent edge resources via short term contracts to ensure better quality of service to its customers. The service can also be partially hosted at the edge, in which case, customers' requests can be partially served at the edge. The total cost incurred by the system is modeled as a combination of the rent cost, the service cost incurred due to latency in serving customers, and the fetch cost incurred as a result of the bandwidth used to fetch the code/databases of the service from the cloud servers to host the service at the edge. In this paper, we compare multiple hosting policies with regret as a metric, defined as the difference in the cost incurred by the policy and the optimal policy over some time horizon $T$. In particular we consider the Retro Renting (RR) and Follow The Perturbed Leader (FTPL) policies proposed in the literature and provide performance guarantees on the regret of these policies. We show that under i.i.d stochastic arrivals, RR policy has linear regret while FTPL policy has constant regret. Next, we propose a variant of FTPL, namely Wait then FTPL (W-FTPL), which also has constant regret while demonstrating much better dependence on the fetch cost. We also show that under adversarial arrivals, RR policy has linear regret while both FTPL and W-FTPL have regret $\mathrm{O}(\sqrt{T})$ which is order-optimal.
In this manuscript, we study the problem of scalar-on-distribution regression; that is, instances where subject-specific distributions or densities, or in practice, repeated measures from those distributions, are the covariates related to a scalar outcome via a regression model. We propose a direct regression for such distribution-valued covariates that circumvents estimating subject-specific densities and directly uses the observed repeated measures as covariates. The model is invariant to any transformation or ordering of the repeated measures. Endowing the regression function with a Gaussian Process prior, we obtain closed form or conjugate Bayesian inference. Our method subsumes the standard Bayesian non-parametric regression using Gaussian Processes as a special case. Theoretically, we show that the method can achieve an optimal estimation error bound. To our knowledge, this is the first theoretical study on Bayesian regression using distribution-valued covariates. Through simulation studies and analysis of activity count dataset, we demonstrate that our method performs better than approaches that require an intermediate density estimation step.
Optimization algorithms such as projected Newton's method, FISTA, mirror descent, and its variants enjoy near-optimal regret bounds and convergence rates, but suffer from a computational bottleneck of computing ``projections'' in potentially each iteration (e.g., $O(T^{1/2})$ regret of online mirror descent). On the other hand, conditional gradient variants solve a linear optimization in each iteration, but result in suboptimal rates (e.g., $O(T^{3/4})$ regret of online Frank-Wolfe). Motivated by this trade-off in runtime v/s convergence rates, we consider iterative projections of close-by points over widely-prevalent submodular base polytopes $B(f)$. We first give necessary and sufficient conditions for when two close points project to the same face of a polytope, and then show that points far away from the polytope project onto its vertices with high probability. We next use this theory and develop a toolkit to speed up the computation of iterative projections over submodular polytopes using both discrete and continuous perspectives. We subsequently adapt the away-step Frank-Wolfe algorithm to use this information and enable early termination. For the special case of cardinality-based submodular polytopes, we improve the runtime of computing certain Bregman projections by a factor of $\Omega(n/\log(n))$. Our theoretical results show orders of magnitude reduction in runtime in preliminary computational experiments.
Estimating probability distributions which describe where an object is likely to be from camera data is a task with many applications. In this work we describe properties which we argue such methods should conform to. We also design a method which conform to these properties. In our experiments we show that our method produces uncertainties which correlate well with empirical errors. We also show that the mode of the predicted distribution outperform our regression baselines. The code for our implementation is available online.
In this paper, we consider the multicollinearity problem in the gamma regression model when model parameters are linearly restricted. The linear restrictions are available from prior information to ensure the validity of scientific theories or structural consistency based on physical phenomena. In order to make relevant statistical inference for a model any available knowledge and prior information on the model parameters should be taken into account. This paper proposes therefore an algorithm to acquire Bayesian estimator for the parameters of a gamma regression model subjected to some linear inequality restrictions. We then show that the proposed estimator outperforms the ordinary estimators such as the maximum likelihood and ridge estimators in term of pertinence and accuracy through Monte Carlo simulations and application to a real dataset.
In this paper, an optimization problem with uncertain objective function coefficients is considered. The uncertainty is specified by providing a discrete scenario set, containing possible realizations of the objective function coefficients. The concept of belief function in the traditional and possibilistic setting is applied to define a set of admissible probability distributions over the scenario set. The generalized Hurwicz criterion is then used to compute a solution. In this paper, the complexity of the resulting problem is explored. Some exact and approximation methods of solving it are proposed.
In this paper we propose an unbiased Monte Carlo maximum likelihood estimator for discretely observed Wright-Fisher diffusions. Our approach is based on exact simulation techniques that are of special interest for diffusion processes defined on a bounded domain, where numerical methods typically fail to remain within the required boundaries. We start by building unbiased maximum likelihood estimators for scalar diffusions and later present an extension to the multidimensional case. Consistency results of our proposed estimator are also presented and the performance of our method is illustrated through a numerical example.
Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.