亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this manuscript, we study the problem of scalar-on-distribution regression; that is, instances where subject-specific distributions or densities, or in practice, repeated measures from those distributions, are the covariates related to a scalar outcome via a regression model. We propose a direct regression for such distribution-valued covariates that circumvents estimating subject-specific densities and directly uses the observed repeated measures as covariates. The model is invariant to any transformation or ordering of the repeated measures. Endowing the regression function with a Gaussian Process prior, we obtain closed form or conjugate Bayesian inference. Our method subsumes the standard Bayesian non-parametric regression using Gaussian Processes as a special case. Theoretically, we show that the method can achieve an optimal estimation error bound. To our knowledge, this is the first theoretical study on Bayesian regression using distribution-valued covariates. Through simulation studies and analysis of activity count dataset, we demonstrate that our method performs better than approaches that require an intermediate density estimation step.

相關內容

When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized experiment studying the effects of vaccination encouragement on flu-related hospital visits.

This work proposes a new procedure for estimating the non-stationary spatial covariance function for Spatial-Temporal Deformation. The proposed procedure is based on a monotonic function approach. The deformation functions are expanded as a linear combination of the wavelet basis. The estimate of the deformation guarantees an injective transformation. Such that two distinct locations in the geographic plane are not mapped into the same point in the deformation plane. Simulation studies have shown the effectiveness of this procedure. An application to historical daily maximum temperature records exemplifies the flexibility of the proposed methodology when dealing with real datasets.

Accurately estimating the probability of failure for safety-critical systems is important for certification. Estimation is often challenging due to high-dimensional input spaces, dangerous test scenarios, and computationally expensive simulators; thus, efficient estimation techniques are important to study. This work reframes the problem of black-box safety validation as a Bayesian optimization problem and introduces an algorithm, Bayesian safety validation, that iteratively fits a probabilistic surrogate model to efficiently predict failures. The algorithm is designed to search for failures, compute the most-likely failure, and estimate the failure probability over an operating domain using importance sampling. We introduce a set of three acquisition functions that focus on reducing uncertainty by covering the design space, optimizing the analytically derived failure boundaries, and sampling the predicted failure regions. Mainly concerned with systems that only output a binary indication of failure, we show that our method also works well in cases where more output information is available. Results show that Bayesian safety validation achieves a better estimate of the probability of failure using orders of magnitude fewer samples and performs well across various safety validation metrics. We demonstrate the algorithm on three test problems with access to ground truth and on a real-world safety-critical subsystem common in autonomous flight: a neural network-based runway detection system. This work is open sourced and currently being used to supplement the FAA certification process of the machine learning components for an autonomous cargo aircraft.

Empirical regression discontinuity (RD) studies often use covariates to increase the precision of their estimates. In this paper, we propose a novel class of estimators that use such covariate information more efficiently than the linear adjustment estimators that are currently used widely in practice. Our approach can accommodate a possibly large number of either discrete or continuous covariates. It involves running a standard RD analysis with an appropriately modified outcome variable, which takes the form of the difference between the original outcome and a function of the covariates. We characterize the function that leads to the estimator with the smallest asymptotic variance, and show how it can be estimated via modern machine learning, nonparametric regression, or classical parametric methods. The resulting estimator is easy to implement, as tuning parameters can be chosen as in a conventional RD analysis. An extensive simulation study illustrates the performance of our approach.

We combine Tyler's robust estimator of the dispersion matrix with nonlinear shrinkage. This approach delivers a simple and fast estimator of the dispersion matrix in elliptical models that is robust against both heavy tails and high dimensions. We prove convergence of the iterative part of our algorithm and demonstrate the favorable performance of the estimator in a wide range of simulation scenarios. Finally, an empirical application demonstrates its state-of-the-art performance on real data.

This paper reviews background and examples of Bayesian predictive synthesis (BPS), and develops details in a subset of BPS mixture models. BPS expands on standard Bayesian model uncertainty analysis for model mixing to provide a broader foundation for calibrating and combining predictive densities from multiple models or other sources. One main focus here is BPS as a framework for justifying and understanding generalized "linear opinion pools," where multiple predictive densities are combined with flexible mixing weights that depend on the forecast outcome itself, i.e., the setting of outcome-dependent model mixing. BPS also defines approaches to incorporating and exploiting dependencies across models defining forecasts, and to formally addressing the problem of model set incompleteness within the subjective Bayesian framework. In addition to an overview of general mixture-based BPS, new methodological developments for dynamic BPS -- involving calibration and pooling of sets of predictive distributions in a univariate time series setting -- are presented. These developments are exemplified in summaries of an analysis in a univariate financial time series study.

Regression can be really difficult in case of big datasets, since we have to dealt with huge volumes of data. The demand of computational resources for the modeling process increases as the scale of the datasets does, since traditional approaches for regression involve inverting huge data matrices. The main problem relies on the large data size, and so a standard approach is subsampling that aims at obtaining the most informative portion of the big data. In the current paper we consider an approach based on leverages scores, already existing in the current literature. The aforementioned approach proposed in order to select subdata for linear model discrimination. However, we highlight its importance on the selection of data points that are the most informative for estimating unknown parameters. We conclude that the approach based on leverage scores improves existing approaches, providing simulation experiments as well as a real data application.

One of the most fundamental problems in network study is community detection. The stochastic block model (SBM) is a widely used model, for which various estimation methods have been developed with their community detection consistency results unveiled. However, the SBM is restricted by the strong assumption that all nodes in the same community are stochastically equivalent, which may not be suitable for practical applications. We introduce a pairwise covariates-adjusted stochastic block model (PCABM), a generalization of SBM that incorporates pairwise covariate information. We study the maximum likelihood estimates of the coefficients for the covariates as well as the community assignments. It is shown that both the coefficient estimates of the covariates and the community assignments are consistent under suitable sparsity conditions. Spectral clustering with adjustment (SCWA) is introduced to efficiently solve PCABM. Under certain conditions, we derive the error bound of community detection under SCWA and show that it is community detection consistent. In addition, we investigate model selection in terms of the number of communities and feature selection for the pairwise covariates, and propose two corresponding algorithms. PCABM compares favorably with the SBM or degree-corrected stochastic block model (DCBM) under a wide range of simulated and real networks when covariate information is accessible.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司