亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We combine Tyler's robust estimator of the dispersion matrix with nonlinear shrinkage. This approach delivers a simple and fast estimator of the dispersion matrix in elliptical models that is robust against both heavy tails and high dimensions. We prove convergence of the iterative part of our algorithm and demonstrate the favorable performance of the estimator in a wide range of simulation scenarios. Finally, an empirical application demonstrates its state-of-the-art performance on real data.

相關內容

We study algorithms for online change-point detection (OCPD), where samples that are potentially heavy-tailed, are presented one at a time and a change in the underlying mean must be detected as early as possible. We present an algorithm based on clipped Stochastic Gradient Descent (SGD), that works even if we only assume that the second moment of the data generating process is bounded. We derive guarantees on worst-case, finite-sample false-positive rate (FPR) over the family of all distributions with bounded second moment. Thus, our method is the first OCPD algorithm that guarantees finite-sample FPR, even if the data is high dimensional and the underlying distributions are heavy-tailed. The technical contribution of our paper is to show that clipped-SGD can estimate the mean of a random vector and simultaneously provide confidence bounds at all confidence values. We combine this robust estimate with a union bound argument and construct a sequential change-point algorithm with finite-sample FPR guarantees. We show empirically that our algorithm works well in a variety of situations, whether the underlying data are heavy-tailed, light-tailed, high dimensional or discrete. No other algorithm achieves bounded FPR theoretically or empirically, over all settings we study simultaneously.

The quantum separability problem consists in deciding whether a bipartite density matrix is entangled or separable. In this work, we propose a machine learning pipeline for finding approximate solutions for this NP-hard problem in large-scale scenarios. We provide an efficient Frank-Wolfe-based algorithm to approximately seek the nearest separable density matrix and derive a systematic way for labeling density matrices as separable or entangled, allowing us to treat quantum separability as a classification problem. Our method is applicable to any two-qudit mixed states. Numerical experiments with quantum states of 3- and 7-dimensional qudits validate the efficiency of the proposed procedure, and demonstrate that it scales up to thousands of density matrices with a high quantum entanglement detection accuracy. This takes a step towards benchmarking quantum separability to support the development of more powerful entanglement detection techniques.

In this paper we consider an orthonormal basis, generated by a tensor product of Fourier basis functions, half period cosine basis functions, and the Chebyshev basis functions. We deal with the approximation problem in high dimensions related to this basis and design a fast algorithm to multiply with the underlying matrix, consisting of rows of the non-equidistant Fourier matrix, the non-equidistant cosine matrix and the non-equidistant Chebyshev matrix, and its transposed. This leads us to an ANOVA (analysis of variance) decomposition for functions with partially periodic boundary conditions through using the Fourier basis in some dimensions and the half period cosine basis or the Chebyshev basis in others. We consider sensitivity analysis in this setting, in order to find an adapted basis for the underlying approximation problem. More precisely, we find the underlying index set of the multidimensional series expansion. Additionally, we test this ANOVA approximation with mixed basis at numerical experiments, and refer to the advantage of interpretable results.

This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.

Bayesian inference and the use of posterior or posterior predictive probabilities for decision making have become increasingly popular in clinical trials. The current approach toward Bayesian clinical trials is, however, a hybrid Bayesian-frequentist approach where the design and decision criteria are assessed with respect to frequentist operating characteristics such as power and type I error rate. These operating characteristics are commonly obtained via simulation studies. In this article we propose methodology to utilize large sample theory of the posterior distribution to define simple parametric models for the sampling distribution of the Bayesian test statistics, i.e., posterior tail probabilities. The parameters of these models are then estimated using a small number of simulation scenarios, thereby refining these models to capture the sampling distribution for small to moderate sample size. The proposed approach toward assessment of operating characteristics and sample size determination can be considered as simulation-assisted rather than simulation-based and significantly reduces the computational burden for design of Bayesian trials.

This paper presents a robust version of the stratified sampling method when multiple uncertain input models are considered for stochastic simulation. Various variance reduction techniques have demonstrated their superior performance in accelerating simulation processes. Nevertheless, they often use a single input model and further assume that the input model is exactly known and fixed. We consider more general cases in which it is necessary to assess a simulation's response to a variety of input models, such as when evaluating the reliability of wind turbines under nonstationary wind conditions or the operation of a service system when the distribution of customer inter-arrival time is heterogeneous at different times. Moreover, the estimation variance may be considerably impacted by uncertainty in input models. To address such nonstationary and uncertain input models, we offer a distributionally robust (DR) stratified sampling approach with the goal of minimizing the maximum of worst-case estimator variances among plausible but uncertain input models. Specifically, we devise a bi-level optimization framework for formulating DR stochastic problems with different ambiguity set designs, based on the $L_2$-norm, 1-Wasserstein distance, parametric family of distributions, and distribution moments. In order to cope with the non-convexity of objective function, we present a solution approach that uses Bayesian optimization. Numerical experiments and the wind turbine case study demonstrate the robustness of the proposed approach.

Thepaperprovesconvergenceofone-levelandmultilevelunsymmetriccollocationforsecondorderelliptic boundary value problems on the bounded domains. By using Schaback's linear discretization theory,L2 errors are obtained based on the kernel-based trial spaces generated by the compactly supported radial basis functions. For the one-level unsymmetric collocation case, we obtain convergence when the testing discretization is finer than the trial discretization. The convergence rates depend on the regularity of the solution, the smoothness of the computing domain, and the approximation of scaled kernel-based spaces. The multilevel process is implemented by employing successive refinement scattered data sets and scaled compactly supported radial basis functions with varying support radii. Convergence of multilevel collocation is further proved based on the theoretical results of one-level unsymmetric collocation. In addition to having the same dependencies as the one-level collocation, the convergence rates of multilevel unsymmetric collocation especially depends on the increasing rules of scattered data and the selection of scaling parameters.

Collections of probability distributions arise in a variety of applications ranging from user activity pattern analysis to brain connectomics. In practice these distributions can be defined over diverse domain types including finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This paper introduces an approach for detecting differences between two collections of distributions over such general domains. To this end, we propose the intrinsic slicing construction that yields a novel class of Wasserstein distances on manifolds and graphs. These distances are Hilbert embeddable, allowing us to reduce the distribution collection comparison problem to a more familiar mean testing problem in a Hilbert space. We provide two testing procedures one based on resampling and another on combining p-values from coordinate-wise tests. Our experiments in various synthetic and real data settings show that the resulting tests are powerful and the p-values are well-calibrated.

Public health policy makers are faced with making crucial decisions rapidly during infectious disease outbreaks such as that caused by SARS-CoV-2. Ideally, rapidly deployed representative health surveys could provide needed data for such decisions. Under the constraints of a limited timeframe and resources, it may be infeasible to implement random based (probability) sampling that yields a population representative survey sample with high response rates. As an alternative, a volunteer (nonprobability) sample is often collected using outreach methods such as social media and web surveys. Compared to a probability sample, a nonprobability sample is subject to selection bias. In addition, when participants are followed longitudinally nonresponse often occurs at later follow up timepoints. As a result, estimates of cross-sectional parameters at later timepoints will be subject to selection bias and nonresponse bias. In this paper, we create kernel-weighted pseudoweights (KW) for the baseline survey participants and construct nonresponse-adjusted kw (kwNR) for respondents at each follow-visit to estimate the population mean at the follow-up visits. We develop Taylor Linearization variance estimation that accounts for variability due to estimating both pseudoweights and the nonresponse adjustments. Simulations are conducted to evaluate the proposed kwNR-weighted estimates. We investigate covariate effects on each of the following: baseline sample participation propensity, follow-up response propensity and the mean of the outcome. We apply the proposed kwNR-weighted methods to the SARS-Cov-2 antibody seropositivity longitudinal study, which begins with a baseline survey early in the pandemic, and collects data at six- and twelve-month post baseline follow-ups.

We consider the problem of computing a grevlex Gr\"obner basis for the set $F_r(M)$ of minors of size $r$ of an $n\times n$ matrix $M$ of generic linear forms over a field of characteristic zero or large enough. Such sets are not regular sequences; in fact, the ideal $\langle F_r(M) \rangle$ cannot be generated by a regular sequence. As such, when using the general-purpose algorithm $F_5$ to find the sought Gr\"obner basis, some computing time is wasted on reductions to zero. We use known results about the first syzygy module of $F_r(M)$ to refine the $F_5$ algorithm in order to detect more reductions to zero. In practice, our approach avoids a significant number of reductions to zero. In particular, in the case $r=n-2$, we prove that our new algorithm avoids all reductions to zero, and we provide a corresponding complexity analysis which improves upon the previously known estimates.

北京阿比特科技有限公司