亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Light field (LF) depth estimation plays a crucial role in many LF-based applications. Existing LF depth estimation methods consider depth estimation as a regression problem, where a pixel-wise L1 loss is employed to supervise the training process. However, the disparity map is only a sub-space projection (i.e., an expectation) of the disparity distribution, which is essential for models to learn. In this paper, we propose a simple yet effective method to learn the sub-pixel disparity distribution by fully utilizing the power of deep networks, especially for LF of narrow baselines. We construct the cost volume at the sub-pixel level to produce a finer disparity distribution and design an uncertainty-aware focal loss to supervise the predicted disparity distribution toward the ground truth. Extensive experimental results demonstrate the effectiveness of our method.Our method significantly outperforms recent state-of-the-art LF depth algorithms on the HCI 4D LF Benchmark in terms of all four accuracy metrics (i.e., BadPix 0.01, BadPix 0.03, BadPix 0.07, and MSE $\times$100). The code and model of the proposed method are available at \url{//github.com/chaowentao/SubFocal}.

相關內容

Supervised finetuning (SFT) on instruction datasets has played a crucial role in achieving the remarkable zero-shot generalization capabilities observed in modern large language models (LLMs). However, the annotation efforts required to produce high quality responses for instructions are becoming prohibitively expensive, especially as the number of tasks spanned by instruction datasets continues to increase. Active learning is effective in identifying useful subsets of samples to annotate from an unlabeled pool, but its high computational cost remains a barrier to its widespread applicability in the context of LLMs. To mitigate the annotation cost of SFT and circumvent the computational bottlenecks of active learning, we propose using experimental design. Experimental design techniques select the most informative samples to label, and typically maximize some notion of uncertainty and/or diversity. In our work, we implement a framework that evaluates several existing and novel experimental design techniques and find that these methods consistently yield significant gains in label efficiency with little computational overhead. On generative tasks, our methods achieve the same generalization performance with only $50\%$ of annotation cost required by random sampling.

Our paper proposes an innovative approach for modeling Fluid-Structure Interaction (FSI). Our method combines both traditional monolithic and partitioned approaches, creating a hybrid solution that facilitates FSI. At each time iteration, the solid mesh is immersed within a fluid-solid mesh, all while maintaining its independent Lagrangian hyperelastic solver. The Eulerian mesh encompasses both the fluid and solid components and accommodates various physical phenomena. We enhance the interaction between solid and fluid through anisotropic mesh adaptation and the Level-Set methods. This enables a more accurate representation of their interaction. Together, these components constitute the Adaptive Immersed Mesh Method (AIMM). For both solvers, we utilize the Variational Multi-Scale (VMS) method, mitigating potential spurious oscillations common with piecewise linear tetrahedral elements. The framework operates in 3D with parallel computing capabilities. Our methods accuracy, robustness, and capabilities are assessed through a series of 2D numerical problems. Furthermore, we present various three-dimensional test cases and compare their results to experimental data.

With the rapid advancements in deep learning technologies, person re-identification (ReID) has witnessed remarkable performance improvements. However, the majority of prior works have traditionally focused on solving the problem via extracting features solely from a single perspective, such as uniform partitioning, hard attention mechanisms, or semantic masks. While these approaches have demonstrated efficacy within specific contexts, they fall short in diverse situations. In this paper, we propose a novel approach, Mutual Distillation Learning For Person Re-identification (termed as MDPR), which addresses the challenging problem from multiple perspectives within a single unified model, leveraging the power of mutual distillation to enhance the feature representations collectively. Specifically, our approach encompasses two branches: a hard content branch to extract local features via a uniform horizontal partitioning strategy and a Soft Content Branch to dynamically distinguish between foreground and background and facilitate the extraction of multi-granularity features via a carefully designed attention mechanism. To facilitate knowledge exchange between these two branches, a mutual distillation and fusion process is employed, promoting the capability of the outputs of each branch. Extensive experiments are conducted on widely used person ReID datasets to validate the effectiveness and superiority of our approach. Notably, our method achieves an impressive $88.7\%/94.4\%$ in mAP/Rank-1 on the DukeMTMC-reID dataset, surpassing the current state-of-the-art results. Our source code is available at //github.com/KuilongCui/MDPR.

Accommodating all the weights on-chip for large-scale NNs remains a great challenge for SRAM based computing-in-memory (SRAM-CIM) with limited on-chip capacity. Previous non-volatile SRAM-CIM (nvSRAM-CIM) addresses this issue by integrating high-density single-level ReRAMs on the top of high-efficiency SRAM-CIM for weight storage to eliminate the off-chip memory access. However, previous SL-nvSRAM-CIM suffers from poor scalability for an increased number of SL-ReRAMs and limited computing efficiency. To overcome these challenges, this work proposes an ultra-high-density three-level ReRAMs-assisted computing-in-nonvolatile-SRAM (TL-nvSRAM-CIM) scheme for large NN models. The clustered n-selector-n-ReRAM (cluster-nSnRs) is employed for reliable weight-restore with eliminated DC power. Furthermore, a ternary SRAM-CIM mechanism with differential computing scheme is proposed for energy-efficient ternary MAC operations while preserving high NN accuracy. The proposed TL-nvSRAM-CIM achieves 7.8x higher storage density, compared with the state-of-art works. Moreover, TL-nvSRAM-CIM shows up to 2.9x and 1.9x enhanced energy-efficiency, respectively, compared to the baseline designs of SRAM-CIM and ReRAM-CIM, respectively.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司