Inequalities among symmetric functions are fundamental questions in mathematics and have various applications in science and engineering. In this paper, we tackle a conjecture about inequalities among the complete homogeneous symmetric function $H_{n,\lambda}$, that is, the inequality $H_{n,\lambda}\leq H_{n,\mu}$ implies majorization order $\lambda\preceq\mu$. This conjecture was proposed by Cuttler, Greene and Skandera in 2011. The conjecture is a close analogy with other known results on Muirhead-type inequalities. In 2021, Heaton and Shankar disproved the conjecture by showing a counterexample for degree $d=8$ and number of variables $n=3$. They then asked whether the conjecture is true when~ the number of variables, $n$, is large enough? In this paper, we answer the question by proving that the conjecture does not hold when $d\geq8$ and $n\geq2$. A crucial step of the proof relies on variables reduction. Inspired by this, we propose a new conjecture for $H_{n,\lambda}\leq H_{n,\mu}$.
Let ${\cal G}$ be a minor-closed graph class and let $G$ be an $n$-vertex graph. We say that $G$ is a $k$-apex of ${\cal G}$ if $G$ contains a set $S$ of at most $k$ vertices such that $G\setminus S$ belongs to ${\cal G}$. Our first result is an algorithm that decides whether $G$ is a $k$-apex of ${\cal G}$ in time $2^{{\sf poly}(k)}\cdot n^2$, where ${\sf poly}$ is a polynomial function depending on ${\cal G}$. This algorithm improves the previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020], whose running time was $2^{{\sf poly}(k)}\cdot n^3$. The elimination distance of $G$ to ${\cal G}$, denoted by ${\sf ed}_{\cal G}(G)$, is the minimum number of rounds required to reduce each connected component of $G$ to a graph in ${\cal G}$ by removing one vertex from each connected component in each round. Bulian and Dawar [Algorithmica 2017] provided an FPT-algorithm, with parameter $k$, to decide whether ${\sf ed}_{\cal G}(G)\leq k$. However, its dependence on $k$ is not explicit. We extend the techniques used in the first algorithm to decide whether ${\sf ed}_{\cal G}(G)\leq k$ in time $2^{2^{2^{{\sf poly}(k)}}}\cdot n^2$. This is the first algorithm for this problem with an explicit parametric dependence in $k$. In the special case where ${\cal G}$ excludes some apex-graph as a minor, we give two alternative algorithms, running in time $2^{2^{{\cal O}(k^2\log k)}}\cdot n^2$ and $2^{{\sf poly}(k)}\cdot n^3$ respectively, where $c$ and ${\sf poly}$ depend on ${\cal G}$. As a stepping stone for these algorithms, we provide an algorithm that decides whether ${\sf ed}_{\cal G}(G)\leq k$ in time $2^{{\cal O}({\sf tw}\cdot k+{\sf tw}\log{\sf tw})}\cdot n$, where ${\sf tw}$ is the treewidth of $G$. Finally, we provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of graphs ${\cal E}_k({\cal G})=\{G\mid{\sf ed}_{\cal G}(G)\leq k\}$.
In a seminal paper, Kannan and Lov\'asz (1988) considered a quantity $\mu_{KL}(\Lambda,K)$ which denotes the best volume-based lower bound on the covering radius $\mu(\Lambda,K)$ of a convex body $K$ with respect to a lattice $\Lambda$. Kannan and Lov\'asz proved that $\mu(\Lambda,K) \leq n \cdot \mu_{KL}(\Lambda,K)$ and the Subspace Flatness Conjecture by Dadush (2012) claims a $O(\log(2n))$ factor suffices, which would match the lower bound from the work of Kannan and Lov\'asz. We settle this conjecture up to a constant in the exponent by proving that $\mu(\Lambda,K) \leq O(\log^{3}(2n)) \cdot \mu_{KL} (\Lambda,K)$. Our proof is based on the Reverse Minkowski Theorem due to Regev and Stephens-Davidowitz (2017). Following the work of Dadush (2012, 2019), we obtain a $(\log(2n))^{O(n)}$-time randomized algorithm to solve integer programs in $n$ variables. Another implication of our main result is a near-optimal flatness constant of $O(n \log^{3}(2n))$.
In this work, we formulate and analyze a geometric multigrid method for the iterative solution of the discrete systems arising from the finite element discretization of symmetric second-order linear elliptic diffusion problems. We show that the iterative solver contracts the algebraic error robustly with respect to the polynomial degree $p \ge 1$ and the (local) mesh size $h$. We further prove that the built-in algebraic error estimator which comes with the solver is $hp$-robustly equivalent to the algebraic error. The application of the solver within the framework of adaptive finite element methods with quasi-optimal computational cost is outlined. Numerical experiments confirm the theoretical findings.
We study Glauber dynamics for sampling from discrete distributions $\mu$ on the hypercube $\{\pm 1\}^n$. Recently, techniques based on spectral independence have successfully yielded optimal $O(n)$ relaxation times for a host of different distributions $\mu$. We show that spectral independence is universal: a relaxation time of $O(n)$ implies spectral independence. We then study a notion of tractability for $\mu$, defined in terms of smoothness of the multilinear extension of its Hamiltonian -- $\log \mu$ -- over $[-1,+1]^n$. We show that Glauber dynamics has relaxation time $O(n)$ for such $\mu$, and using the universality of spectral independence, we conclude that these distributions are also fractionally log-concave and consequently satisfy modified log-Sobolev inequalities. We sharpen our estimates and obtain approximate tensorization of entropy and the optimal $\widetilde{O}(n)$ mixing time for random Hamiltonians, i.e. the classically studied mixed $p$-spin model at sufficiently high temperature. These results have significant downstream consequences for concentration of measure, statistical testing, and learning.
This paper is devoted to the statistical and numerical properties of the geometric median, and its applications to the problem of robust mean estimation via the median of means principle. Our main theoretical results include (a) an upper bound for the distance between the mean and the median for general absolutely continuous distributions in R^d, and examples of specific classes of distributions for which these bounds do not depend on the ambient dimension d; (b) exponential deviation inequalities for the distance between the sample and the population versions of the geometric median, which again depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we deduce improved bounds for the (geometric) median of means estimator that hold for large classes of heavy-tailed distributions. Finally, we address the error of numerical approximation, which is an important practical aspect of any statistical estimation procedure. We demonstrate that the objective function minimized by the geometric median satisfies a "local quadratic growth" condition that allows one to translate suboptimality bounds for the objective function to the corresponding bounds for the numerical approximation to the median itself, and propose a simple stopping rule applicable to any optimization method which yields explicit error guarantees. We conclude with the numerical experiments including the application to estimation of mean values of log-returns for S&P 500 data.
We prove tight bounds on the site percolation threshold for $k$-uniform hypergraphs of maximum degree $\Delta$ and for $k$-uniform hypergraphs of maximum degree $\Delta$ in which any pair of edges overlaps in at most $r$ vertices. The hypergraphs that achieve these bounds are hypertrees, but unlike in the case of graphs, there are many different $k$-uniform, $\Delta$-regular hypertrees. Determining the extremal tree for a given $k, \Delta, r$ involves an optimization problem, and our bounds arise from a convex relaxation of this problem. By combining our percolation bounds with the method of disagreement percolation we obtain improved bounds on the uniqueness threshold for the hard-core model on hypergraphs satisfying the same constraints. Our uniqueness conditions imply exponential weak spatial mixing, and go beyond the known bounds for rapid mixing of local Markov chains and existence of efficient approximate counting and sampling algorithms. Our results lead to natural conjectures regarding the aforementioned algorithmic tasks, based on the intuition that uniqueness thresholds for the extremal hypertrees for percolation determine computational thresholds.
We study dynamic algorithms in the model of algorithms with predictions. We assume the algorithm is given imperfect predictions regarding future updates, and we ask how such predictions can be used to improve the running time. This can be seen as a model interpolating between classic online and offline dynamic algorithms. Our results give smooth tradeoffs between these two extreme settings. First, we give algorithms for incremental and decremental transitive closure and approximate APSP that take as an additional input a predicted sequence of updates (edge insertions, or edge deletions, respectively). They preprocess it in $\tilde{O}(n^{(3+\omega)/2})$ time, and then handle updates in $\tilde{O}(1)$ worst-case time and queries in $\tilde{O}(\eta^2)$ worst-case time. Here $\eta$ is an error measure that can be bounded by the maximum difference between the predicted and actual insertion (deletion) time of an edge, i.e., by the $\ell_\infty$-error of the predictions. The second group of results concerns fully dynamic problems with vertex updates, where the algorithm has access to a predicted sequence of the next $n$ updates. We show how to solve fully dynamic triangle detection, maximum matching, single-source reachability, and more, in $O(n^{\omega-1}+n\eta_i)$ worst-case update time. Here $\eta_i$ denotes how much earlier the $i$-th update occurs than predicted. Our last result is a reduction that transforms a worst-case incremental algorithm without predictions into a fully dynamic algorithm which is given a predicted deletion time for each element at the time of its insertion. As a consequence we can, e.g., maintain fully dynamic exact APSP with such predictions in $\tilde{O}(n^2)$ worst-case vertex insertion time and $\tilde{O}(n^2 (1+\eta_i))$ worst-case vertex deletion time (for the prediction error $\eta_i$ defined as above).
We describe a simple algorithm for estimating the $k$-th normalized Betti number of a simplicial complex over $n$ elements using the path integral Monte Carlo method. For a general simplicial complex, the running time of our algorithm is $n^{O\left(\frac{1}{\sqrt{\gamma}}\log\frac{1}{\varepsilon}\right)}$ with $\gamma$ measuring the spectral gap of the combinatorial Laplacian and $\varepsilon \in (0,1)$ the additive precision. In the case of a clique complex, the running time of our algorithm improves to $\left(n/\lambda_{\max}\right)^{O\left(\frac{1}{\sqrt{\gamma}}\log\frac{1}{\varepsilon}\right)}$ with $\lambda_{\max} \geq k$, where $\lambda_{\max}$ is the maximum eigenvalue of the combinatorial Laplacian. Our algorithm provides a classical benchmark for a line of quantum algorithms for estimating Betti numbers. On clique complexes it matches their running time when, for example, $\gamma \in \Omega(1)$ and $k \in \Omega(n)$.
There is an emerging interest in generating robust counterfactual explanations that would remain valid if the model is updated or changed even slightly. Towards finding robust counterfactuals, existing literature often assumes that the original model $m$ and the new model $M$ are bounded in the parameter space, i.e., $\|\text{Params}(M){-}\text{Params}(m)\|{<}\Delta$. However, models can often change significantly in the parameter space with little to no change in their predictions or accuracy on the given dataset. In this work, we introduce a mathematical abstraction termed \emph{naturally-occurring} model change, which allows for arbitrary changes in the parameter space such that the change in predictions on points that lie on the data manifold is limited. Next, we propose a measure -- that we call \emph{Stability} -- to quantify the robustness of counterfactuals to potential model changes for differentiable models, e.g., neural networks. Our main contribution is to show that counterfactuals with sufficiently high value of \emph{Stability} as defined by our measure will remain valid after potential ``naturally-occurring'' model changes with high probability (leveraging concentration bounds for Lipschitz function of independent Gaussians). Since our quantification depends on the local Lipschitz constant around a data point which is not always available, we also examine practical relaxations of our proposed measure and demonstrate experimentally how they can be incorporated to find robust counterfactuals for neural networks that are close, realistic, and remain valid after potential model changes. This work also has interesting connections with model multiplicity, also known as, the Rashomon effect.
Selection of a group of representatives satisfying certain fairness constraints, is a commonly occurring scenario. Motivated by this, we initiate a systematic algorithmic study of a \emph{fair} version of \textsc{Hitting Set}. In the classical \textsc{Hitting Set} problem, the input is a universe $\mathcal{U}$, a family $\mathcal{F}$ of subsets of $\mathcal{U}$, and a non-negative integer $k$. The goal is to determine whether there exists a subset $S \subseteq \mathcal{U}$ of size $k$ that \emph{hits} (i.e., intersects) every set in $\mathcal{F}$. Inspired by several recent works, we formulate a fair version of this problem, as follows. The input additionally contains a family $\mathcal{B}$ of subsets of $\mathcal{U}$, where each subset in $\mathcal{B}$ can be thought of as the group of elements of the same \emph{type}. We want to find a set $S \subseteq \mathcal{U}$ of size $k$ that (i) hits all sets of $\mathcal{F}$, and (ii) does not contain \emph{too many} elements of each type. We call this problem \textsc{Fair Hitting Set}, and chart out its tractability boundary from both classical as well as multivariate perspective. Our results use a multitude of techniques from parameterized complexity including classical to advanced tools, such as, methods of representative sets for matroids, FO model checking, and a generalization of best known kernels for \textsc{Hitting Set}.