亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let ${\cal G}$ be a minor-closed graph class and let $G$ be an $n$-vertex graph. We say that $G$ is a $k$-apex of ${\cal G}$ if $G$ contains a set $S$ of at most $k$ vertices such that $G\setminus S$ belongs to ${\cal G}$. Our first result is an algorithm that decides whether $G$ is a $k$-apex of ${\cal G}$ in time $2^{{\sf poly}(k)}\cdot n^2$, where ${\sf poly}$ is a polynomial function depending on ${\cal G}$. This algorithm improves the previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020], whose running time was $2^{{\sf poly}(k)}\cdot n^3$. The elimination distance of $G$ to ${\cal G}$, denoted by ${\sf ed}_{\cal G}(G)$, is the minimum number of rounds required to reduce each connected component of $G$ to a graph in ${\cal G}$ by removing one vertex from each connected component in each round. Bulian and Dawar [Algorithmica 2017] provided an FPT-algorithm, with parameter $k$, to decide whether ${\sf ed}_{\cal G}(G)\leq k$. However, its dependence on $k$ is not explicit. We extend the techniques used in the first algorithm to decide whether ${\sf ed}_{\cal G}(G)\leq k$ in time $2^{2^{2^{{\sf poly}(k)}}}\cdot n^2$. This is the first algorithm for this problem with an explicit parametric dependence in $k$. In the special case where ${\cal G}$ excludes some apex-graph as a minor, we give two alternative algorithms, running in time $2^{2^{{\cal O}(k^2\log k)}}\cdot n^2$ and $2^{{\sf poly}(k)}\cdot n^3$ respectively, where $c$ and ${\sf poly}$ depend on ${\cal G}$. As a stepping stone for these algorithms, we provide an algorithm that decides whether ${\sf ed}_{\cal G}(G)\leq k$ in time $2^{{\cal O}({\sf tw}\cdot k+{\sf tw}\log{\sf tw})}\cdot n$, where ${\sf tw}$ is the treewidth of $G$. Finally, we provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of graphs ${\cal E}_k({\cal G})=\{G\mid{\sf ed}_{\cal G}(G)\leq k\}$.

相關內容

This work considers the low-rank approximation of a matrix $A(t)$ depending on a parameter $t$ in a compact set $D \subset \mathbb{R}^d$. Application areas that give rise to such problems include computational statistics and dynamical systems. Randomized algorithms are an increasingly popular approach for performing low-rank approximation and they usually proceed by multiplying the matrix with random dimension reduction matrices (DRMs). Applying such algorithms directly to $A(t)$ would involve different, independent DRMs for every $t$, which is not only expensive but also leads to inherently non-smooth approximations. In this work, we propose to use constant DRMs, that is, $A(t)$ is multiplied with the same DRM for every $t$. The resulting parameter-dependent extensions of two popular randomized algorithms, the randomized singular value decomposition and the generalized Nystr\"{o}m method, are computationally attractive, especially when $A(t)$ admits an affine linear decomposition with respect to $t$. We perform a probabilistic analysis for both algorithms, deriving bounds on the expected value as well as failure probabilities for the approximation error when using Gaussian random DRMs. Both, the theoretical results and numerical experiments, show that the use of constant DRMs does not impair their effectiveness; our methods reliably return quasi-best low-rank approximations.

Given a positive integer $d$, the class $d$-DIR is defined as all those intersection graphs formed from a finite collection of line segments in ${\mathbb R}^2$ having at most $d$ slopes. Since each slope induces an interval graph, it easily follows for every $G$ in $d$-DIR with clique number at most $\omega$ that the chromatic number $\chi(G)$ of $G$ is at most $d\omega$. We show for every even value of $\omega$ how to construct a graph in $d$-DIR that meets this bound exactly. This partially confirms a conjecture of Bhattacharya, Dvo\v{r}\'ak and Noorizadeh. Furthermore, we show that the $\chi$-binding function of $d$-DIR is $\omega \mapsto d\omega$ for $\omega$ even and $\omega \mapsto d(\omega-1)+1$ for $\omega$ odd. This refutes said conjecture of Bhattacharya, Dvo\v{r}\'ak and Noorizadeh.

Given a boolean formula $\Phi$(X, Y, Z), the Max\#SAT problem asks for finding a partial model on the set of variables X, maximizing its number of projected models over the set of variables Y. We investigate a strict generalization of Max\#SAT allowing dependencies for variables in X, effectively turning it into a synthesis problem. We show that this new problem, called DQMax\#SAT, subsumes both the DQBF and DSSAT problems. We provide a general resolution method, based on a reduction to Max\#SAT, together with two improvements for dealing with its inherent complexity. We further discuss a concrete application of DQMax\#SAT for symbolic synthesis of adaptive attackers in the field of program security. Finally, we report preliminary results obtained on the resolution of benchmark problems using a prototype DQMax\#SAT solver implementation.

In this note, we give sufficient conditions for the almost sure and the convergence in $\mathbb{L}^p$ of a $U$-statistic of order $m$ built on a strictly stationary but not necessarily ergodic sequence.

Let the costs $C(i,j)$ for an instance of the asymmetric traveling salesperson problem be independent uniform $[0,1]$ random variables. We consider the efficiency of branch and bound algorithms that use the assignment relaxation as a lower bound. We show that w.h.p. the number of steps taken in any such branch and bound algorithm is $e^{\Omega(n^a)}$ for some small absolute constant $a>0$.

We introduce two new classes of covering codes in graphs for every positive integer $r$. These new codes are called local $r$-identifying and local $r$-locating-dominating codes and they are derived from $r$-identifying and $r$-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small $n$ optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular grid, and the king grid. We prove that seven out of eight of our constructions have optimal densities.

Given a target distribution $\pi$ and an arbitrary Markov infinitesimal generator $L$ on a finite state space $\mathcal{X}$, we develop three structured and inter-related approaches to generate new reversiblizations from $L$. The first approach hinges on a geometric perspective, in which we view reversiblizations as projections onto the space of $\pi$-reversible generators under suitable information divergences such as $f$-divergences. With different choices of functions $f$, we not only recover nearly all established reversiblizations but also unravel and generate new reversiblizations. Along the way, we unveil interesting geometric results such as bisection properties, Pythagorean identities, parallelogram laws and a Markov chain counterpart of the arithmetic-geometric-harmonic mean inequality governing these reversiblizations. This further serves as motivation for introducing the notion of information centroids of a sequence of Markov chains and to give conditions for their existence and uniqueness. Building upon the first approach, we view reversiblizations as generalized means. In this second approach, we construct new reversiblizations via different natural notions of generalized means such as the Cauchy mean or the dual mean. In the third approach, we combine the recently introduced locally-balanced Markov processes framework and the notion of convex $*$-conjugate in the study of $f$-divergence. The latter offers a rich source of balancing functions to generate new reversiblizations.

Let $G$ be a graph on $n$ vertices with adjacency matrix $A$, and let $\mathbf{1}$ be the all-ones vector. We call $G$ controllable if the set of vectors $\mathbf{1}, A\mathbf{1}, \dots, A^{n-1}\mathbf{1}$ spans the whole space $\mathbb{R}^n$. We characterize the isomorphism problem of controllable graphs in terms of other combinatorial, geometric and logical problems. We also describe a polynomial time algorithm for graph isomorphism that works for almost all graphs.

If $G$ is a bipartite graph, Hall's theorem \cite{H35} gives a condition for the existence of a matching of $G$ covering one side of the bipartition. This theorem admits a well-known algorithmic proof involving the repeated search of augmenting paths. We present here an alternative algorithm, using a game-theoretic formulation of the problem. We also show how to extend this formulation to the setting of balanced hypergraphs.

Let $f:[0,1]^d\to\mathbb{R}$ be a completely monotone integrand as defined by Aistleitner and Dick (2015) and let points $\boldsymbol{x}_0,\dots,\boldsymbol{x}_{n-1}\in[0,1]^d$ have a non-negative local discrepancy (NNLD) everywhere in $[0,1]^d$. We show how to use these properties to get a non-asymptotic and computable upper bound for the integral of $f$ over $[0,1]^d$. An analogous non-positive local discrepancy (NPLD) property provides a computable lower bound. It has been known since Gabai (1967) that the two dimensional Hammersley points in any base $b\ge2$ have non-negative local discrepancy. Using the probabilistic notion of associated random variables, we generalize Gabai's finding to digital nets in any base $b\ge2$ and any dimension $d\ge1$ when the generator matrices are permutation matrices. We show that permutation matrices cannot attain the best values of the digital net quality parameter when $d\ge3$. As a consequence the computable absolutely sure bounds we provide come with less accurate estimates than the usual digital net estimates do in high dimensions. We are also able to construct high dimensional rank one lattice rules that are NNLD. We show that those lattices do not have good discrepancy properties: any lattice rule with the NNLD property in dimension $d\ge2$ either fails to be projection regular or has all its points on the main diagonal.

北京阿比特科技有限公司