亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

If $G$ is a bipartite graph, Hall's theorem \cite{H35} gives a condition for the existence of a matching of $G$ covering one side of the bipartition. This theorem admits a well-known algorithmic proof involving the repeated search of augmenting paths. We present here an alternative algorithm, using a game-theoretic formulation of the problem. We also show how to extend this formulation to the setting of balanced hypergraphs.

相關內容

Selecting the step size for the Metropolis-adjusted Langevin algorithm (MALA) is necessary in order to obtain satisfactory performance. However, finding an adequate step size for an arbitrary target distribution can be a difficult task and even the best step size can perform poorly in specific regions of the space when the target distribution is sufficiently complex. To resolve this issue we introduce autoMALA, a new Markov chain Monte Carlo algorithm based on MALA that automatically sets its step size at each iteration based on the local geometry of the target distribution. We prove that autoMALA has the correct invariant distribution, despite continual automatic adjustments of the step size. Our experiments demonstrate that autoMALA is competitive with related state-of-the-art MCMC methods, in terms of the number of log density evaluations per effective sample, and it outperforms state-of-the-art samplers on targets with varying geometries. Furthermore, we find that autoMALA tends to find step sizes comparable to optimally-tuned MALA when a fixed step size suffices for the whole domain.

The categorical models of the differential lambda-calculus are additive categories because of the Leibniz rule which requires the summation of two expressions. This means that, as far as the differential lambda-calculus and differential linear logic are concerned, these models feature finite non-determinism and indeed these languages are essentially non-deterministic. In a previous paper we introduced a categorical framework for differentiation which does not require additivity and is compatible with deterministic models such as coherence spaces and probabilistic models such as probabilistic coherence spaces. Based on this semantics we develop a syntax of a deterministic version of the differential lambda-calculus. One nice feature of this new approach to differentiation is that it is compatible with general fixpoints of terms, so our language is actually a differential extension of PCF for which we provide a fully deterministic operational semantics.

We describe Bayes factors functions based on z, t, $\chi^2$, and F statistics and the prior distributions used to define alternative hypotheses. The non-local alternative prior distributions are centered on standardized effects, which index the Bayes factor function. The prior densities include a dispersion parameter that models the variation of effect sizes across replicated experiments. We examine the convergence rates of Bayes factor functions under true null and true alternative hypotheses. Several examples illustrate the application of the Bayes factor functions to replicated experimental designs and compare the conclusions from these analyses to other default Bayes factor methods.

The multispecies Landau collision operator describes the two-particle, small scattering angle or grazing collisions in a plasma made up of different species of particles such as electrons and ions. Recently, a structure preserving deterministic particle method arXiv:1910.03080 has been developed for the single species spatially homogeneous Landau equation. This method relies on a regularization of the Landau collision operator so that an approximate solution, which is a linear combination of Dirac delta distributions, is well-defined. Based on a weak form of the regularized Landau equation, the time dependent locations of the Dirac delta functions satisfy a system of ordinary differential equations. In this work, we extend this particle method to the multispecies case, and examine its conservation of mass, momentum, and energy, and decay of entropy properties. We show that the equilibrium distribution of the regularized multispecies Landau equation is a Maxwellian distribution, and state a critical condition on the regularization parameters that guarantees a species independent equilibrium temperature. A convergence study comparing an exact multispecies BKW solution to the particle solution shows approximately 2nd order accuracy. Important physical properties such as conservation, decay of entropy, and equilibrium distribution of the particle method are demonstrated with several numerical examples.

Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in physics and engineering. Many such problems have alternative formulations as integral equations that are mathematically more tractable than their PDE counterparts. However, the integral equation formulation poses a challenge in solving the dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and compute costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' The analysis of its parallel scalability applies generally to a class of existing methods that exploit the so-called strong admissibility. Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes data movement. Given a compression tolerance, our method constructs an approximate factorization of a discretized integral operator (dense matrix), which can be used to solve linear systems efficiently in parallel. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to demonstrate the performance of our implementation using the Julia language.

Suppose a finite, unweighted, combinatorial graph $G = (V,E)$ is the union of several (degree-)regular graphs which are then additionally connected with a few additional edges. $G$ will then have only a small number of vertices $v \in V$ with the property that one of their neighbors $(v,w) \in E$ has a higher degree $\mbox{deg}(w) > \mbox{deg}(v)$. We prove the converse statement: if a graph has few vertices having a neighbor with higher degree and satisfies a mild regularity condition, then, via adding and removing a few edges, the graph can be turned into a disjoint union of (distance-)regular graphs. The number of edge operations depends on the maximum degree and number of vertices with a higher degree neighbor but is independent of the size of $|V|$.

Neural Cellular Automata (NCA) are a powerful combination of machine learning and mechanistic modelling. We train NCA to learn complex dynamics from time series of images and PDE trajectories. Our method is designed to identify underlying local rules that govern large scale dynamic emergent behaviours. Previous work on NCA focuses on learning rules that give stationary emergent structures. We extend NCA to capture both transient and stable structures within the same system, as well as learning rules that capture the dynamics of Turing pattern formation in nonlinear Partial Differential Equations (PDEs). We demonstrate that NCA can generalise very well beyond their PDE training data, we show how to constrain NCA to respect given symmetries, and we explore the effects of associated hyperparameters on model performance and stability. Being able to learn arbitrary dynamics gives NCA great potential as a data driven modelling framework, especially for modelling biological pattern formation.

We identify a family of $O(|E(G)|^2)$ nontrivial facets of the connected matching polytope of a graph $G$, that is, the convex hull of incidence vectors of matchings in $G$ whose covered vertices induce a connected subgraph. Accompanying software to further inspect the polytope of an input graph is available.

New lower order $H(\textrm{div})$-conforming finite elements for symmetric tensors are constructed in arbitrary dimension. The space of shape functions is defined by enriching the symmetric quadratic polynomial space with the $(d+1)$-order normal-normal face bubble space. The reduced counterpart has only $d(d+1)^2$ degrees of freedom. In two dimensions, basis functions are explicitly given in terms of barycentric coordinates. Lower order conforming finite element elasticity complexes starting from the Bell element, are developed in two dimensions. These finite elements for symmetric tensors are applied to devise robust mixed finite element methods for the linear elasticity problem, which possess the uniform error estimates with respect to the Lam\'{e} coefficient $\lambda$, and superconvergence for the displacement. Numerical results are provided to verify the theoretical convergence rates.

In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.

北京阿比特科技有限公司