亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study Glauber dynamics for sampling from discrete distributions $\mu$ on the hypercube $\{\pm 1\}^n$. Recently, techniques based on spectral independence have successfully yielded optimal $O(n)$ relaxation times for a host of different distributions $\mu$. We show that spectral independence is universal: a relaxation time of $O(n)$ implies spectral independence. We then study a notion of tractability for $\mu$, defined in terms of smoothness of the multilinear extension of its Hamiltonian -- $\log \mu$ -- over $[-1,+1]^n$. We show that Glauber dynamics has relaxation time $O(n)$ for such $\mu$, and using the universality of spectral independence, we conclude that these distributions are also fractionally log-concave and consequently satisfy modified log-Sobolev inequalities. We sharpen our estimates and obtain approximate tensorization of entropy and the optimal $\widetilde{O}(n)$ mixing time for random Hamiltonians, i.e. the classically studied mixed $p$-spin model at sufficiently high temperature. These results have significant downstream consequences for concentration of measure, statistical testing, and learning.

相關內容

We propose a new framework for the sampling, compression, and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces. Our approach involves constructing a tensor called the RaySense sketch, which captures nearest neighbors from the underlying geometry of points along a set of rays. We explore various operations that can be performed on the RaySense sketch, leading to different properties and potential applications. Statistical information about the data set can be extracted from the sketch, independent of the ray set. Line integrals on point sets can be efficiently computed using the sketch. We also present several examples illustrating applications of the proposed strategy in practical scenarios.

Every constructive model of computation (CMC) has an underlying composition mechanism for combining simple computation devices into more complex ones. Composition can be done by (explicitly or implicitly) defining control flow, data flow or any combination thereof. Control flow specifies the order in which individual computation devices are activated, whereas data flow defines how data is exchanged among them. Unfortunately, traditional CMCs either mix data and control or only consider one dimension explicitly, which makes it difficult to reason about data flow and control flow separately. Reasoning about these dimensions orthogonally is a crucial desideratum for optimisation, maintainability and verification purposes. In this paper, we introduce a novel model that explicitly treats data flow and control flow as separate dimensions, while providing modularity. As the model is rooted in category theory, it provides category-theoretic operations for compositionally constructing sequential or parallel composites. Compositionality entails that a composite exhibits the same properties as its respective constituents, including separation of concerns and modularity.

We study the complexity of producing $(\delta,\epsilon)$-stationary points of Lipschitz objectives which are possibly neither smooth nor convex, using only noisy function evaluations. Recent works proposed several stochastic zero-order algorithms that solve this task, all of which suffer from a dimension-dependence of $\Omega(d^{3/2})$ where $d$ is the dimension of the problem, which was conjectured to be optimal. We refute this conjecture by providing a faster algorithm that has complexity $O(d\delta^{-1}\epsilon^{-3})$, which is optimal (up to numerical constants) with respect to $d$ and also optimal with respect to the accuracy parameters $\delta,\epsilon$, thus solving an open question due to Lin et al. (NeurIPS'22). Moreover, the convergence rate achieved by our algorithm is also optimal for smooth objectives, proving that in the nonconvex stochastic zero-order setting, nonsmooth optimization is as easy as smooth optimization. We provide algorithms that achieve the aforementioned convergence rate in expectation as well as with high probability. Our analysis is based on a simple yet powerful geometric lemma regarding the Goldstein-subdifferential set, which allows utilizing recent advancements in first-order nonsmooth nonconvex optimization.

Since the introduction of DeepMimic [Peng et al. 2018], subsequent research has focused on expanding the repertoire of simulated motions across various scenarios. In this study, we propose an alternative approach for this goal, a deep reinforcement learning method based on the simulation of a single-rigid-body character. Using the centroidal dynamics model (CDM) to express the full-body character as a single rigid body (SRB) and training a policy to track a reference motion, we can obtain a policy that is capable of adapting to various unobserved environmental changes and controller transitions without requiring any additional learning. Due to the reduced dimension of state and action space, the learning process is sample-efficient. The final full-body motion is kinematically generated in a physically plausible way, based on the state of the simulated SRB character. The SRB simulation is formulated as a quadratic programming (QP) problem, and the policy outputs an action that allows the SRB character to follow the reference motion. We demonstrate that our policy, efficiently trained within 30 minutes on an ultraportable laptop, has the ability to cope with environments that have not been experienced during learning, such as running on uneven terrain or pushing a box, and transitions between learned policies, without any additional learning.

{\em Algorithms with predictions} incorporate machine learning predictions into algorithm design. A plethora of recent works incorporated predictions to improve on worst-case optimal bounds for online problems. In this paper, we initiate the study of complexity of dynamic data structures with predictions, including dynamic graph algorithms. Unlike in online algorithms, the main goal in dynamic data structures is to maintain the solution {\em efficiently} with every update. Motivated by work in online algorithms, we investigate three natural models of predictions: (1) $\varepsilon$-accurate predictions where each predicted request matches the true request with probability at least $\varepsilon$, (2) list-accurate predictions where a true request comes from a list of possible requests, and (3) bounded delay predictions where the true requests are some (unknown) permutations of the predicted requests. For $\varepsilon$-accurate predictions, we show that lower bounds from the non-prediction setting of a problem carry over, up to a $1-\varepsilon$ factor. Then we give general reductions among the prediction models for a problem, showing that lower bounds for bounded delay imply lower bounds for list-accurate predictions, which imply lower bounds for $\varepsilon$-accurate predictions. Further, we identify two broad problem classes based on lower bounds due to the Online Matrix Vector (OMv) conjecture. Specifically, we show that dynamic problems that are {\em locally correctable} have strong conditional lower bounds for list-accurate predictions that are equivalent to the non-prediction setting, unless list-accurate predictions are perfect. Moreover, dynamic problems that are {\em locally reducible} have a smooth transition in the running time. We categorize problems accordingly and give upper bounds that show that our lower bounds are almost tight, including problems in dynamic graphs.

Adversarial attacks expose vulnerabilities of deep learning models by introducing minor perturbations to the input, which lead to substantial alterations in the output. Our research focuses on the impact of such adversarial attacks on sequence-to-sequence (seq2seq) models, specifically machine translation models. We introduce algorithms that incorporate basic text perturbation heuristics and more advanced strategies, such as the gradient-based attack, which utilizes a differentiable approximation of the inherently non-differentiable translation metric. Through our investigation, we provide evidence that machine translation models display robustness displayed robustness against best performed known adversarial attacks, as the degree of perturbation in the output is directly proportional to the perturbation in the input. However, among underdogs, our attacks outperform alternatives, providing the best relative performance. Another strong candidate is an attack based on mixing of individual characters.

We consider relational semantics (R-models) for the Lambek calculus extended with intersection and explicit constants for zero and unit. For its variant without constants and a restriction which disallows empty antecedents, Andreka and Mikulas (1994) prove strong completeness. We show that it fails without this restriction, but, on the other hand, prove weak completeness for non-standard interpretation of constants. For the standard interpretation, even weak completeness fails. The weak completeness result extends to an infinitary setting, for so-called iterative divisions (Kleene star under division). We also prove strong completeness results for product-free fragments.

A well-known approach in the design of efficient algorithms, called matrix sparsification, approximates a matrix $A$ with a sparse matrix $A'$. Achlioptas and McSherry [2007] initiated a long line of work on spectral-norm sparsification, which aims to guarantee that $\|A'-A\|\leq \epsilon \|A\|$ for error parameter $\epsilon>0$. Various forms of matrix approximation motivate considering this problem with a guarantee according to the Schatten $p$-norm for general $p$, which includes the spectral norm as the special case $p=\infty$. We investigate the relation between fixed but different $p\neq q$, that is, whether sparsification in the Schatten $p$-norm implies (existentially and/or algorithmically) sparsification in the Schatten $q\text{-norm}$ with similar sparsity. An affirmative answer could be tremendously useful, as it will identify which value of $p$ to focus on. Our main finding is a surprising contrast between this question and the analogous case of $\ell_p$-norm sparsification for vectors: For vectors, the answer is affirmative for $p<q$ and negative for $p>q$, but for matrices we answer negatively for almost all sufficiently distinct $p\neq q$. In addition, our explicit constructions may be of independent interest.

Recurrence equations lie at the heart of many computational paradigms including dynamic programming, graph analysis, and linear solvers. These equations are often expensive to compute and much work has gone into optimizing them for different situations. The set of recurrence implementations is a large design space across the set of all recurrences (e.g., the Viterbi and Floyd-Warshall algorithms), the choice of data structures (e.g., dense and sparse matrices), and the set of different loop orders. Optimized library implementations do not exist for most points in this design space, and developers must therefore often manually implement and optimize recurrences. We present a general framework for compiling recurrence equations into native code corresponding to any valid point in this general design space. In this framework, users specify a system of recurrences, the type of data structures for storing the input and outputs, and a set of scheduling primitives for optimization. A greedy algorithm then takes this specification and lowers it into a native program that respects the dependencies inherent to the recurrence equation. We describe the compiler transformations necessary to lower this high-level specification into native parallel code for either sparse and dense data structures and provide an algorithm for determining whether the recurrence system is solvable with the provided scheduling primitives. We evaluate the performance and correctness of the generated code on various computational tasks from domains including dense and sparse matrix solvers, dynamic programming, graph problems, and sparse tensor algebra. We demonstrate that generated code has competitive performance to handwritten implementations in libraries.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司