We investigate the capabilities of transfer learning in the area of structural health monitoring. In particular, we are interested in damage detection for concrete structures. Typical image datasets for such problems are relatively small, calling for the transfer of learned representation from a related large-scale dataset. Past efforts of damage detection using images have mainly considered cross-domain transfer learning approaches using pre-trained IMAGENET models that are subsequently fine-tuned for the target task. However, there are rising concerns about the generalizability of IMAGENET representations for specific target domains, such as for visual inspection and medical imaging. We, therefore, evaluate a combination of in-domain and cross-domain transfer learning strategies for damage detection in bridges. We perform comprehensive comparisons to study the impact of cross-domain and in-domain transfer, with various initialization strategies, using six publicly available visual inspection datasets. The pre-trained models are also evaluated for their ability to cope with the extremely low-data regime. We show that the combination of cross-domain and in-domain transfer persistently shows superior performance specially with tiny datasets. Likewise, we also provide visual explanations of predictive models to enable algorithmic transparency and provide insights to experts about the intrinsic decision logic of typically black-box deep models.
Cross-domain sentiment classification has been a hot spot these years, which aims to learn a reliable classifier using labeled data from the source domain and evaluate it on the target domain. In this vein, most approaches utilized domain adaptation that maps data from different domains into a common feature space. To further improve the model performance, several methods targeted to mine domain-specific information were proposed. However, most of them only utilized a limited part of domain-specific information. In this study, we first develop a method of extracting domain-specific words based on the topic information. Then, we propose a Topic Driven Adaptive Network (TDAN) for cross-domain sentiment classification. The network consists of two sub-networks: semantics attention network and domain-specific word attention network, the structures of which are based on transformers. These sub-networks take different forms of input and their outputs are fused as the feature vector. Experiments validate the effectiveness of our TDAN on sentiment classification across domains.
Unsupervised domain adaptation (UDA) aims to transfer the knowledge learnt from a labeled source domain to an unlabeled target domain. Previous work is mainly built upon convolutional neural networks (CNNs) to learn domain-invariant representations. With the recent exponential increase in applying Vision Transformer (ViT) to vision tasks, the capability of ViT in adapting cross-domain knowledge, however, remains unexplored in the literature. To fill this gap, this paper first comprehensively investigates the transferability of ViT on a variety of domain adaptation tasks. Surprisingly, ViT demonstrates superior transferability over its CNNs-based counterparts with a large margin, while the performance can be further improved by incorporating adversarial adaptation. Notwithstanding, directly using CNNs-based adaptation strategies fails to take the advantage of ViT's intrinsic merits (e.g., attention mechanism and sequential image representation) which play an important role in knowledge transfer. To remedy this, we propose an unified framework, namely Transferable Vision Transformer (TVT), to fully exploit the transferability of ViT for domain adaptation. Specifically, we delicately devise a novel and effective unit, which we term Transferability Adaption Module (TAM). By injecting learned transferabilities into attention blocks, TAM compels ViT focus on both transferable and discriminative features. Besides, we leverage discriminative clustering to enhance feature diversity and separation which are undermined during adversarial domain alignment. To verify its versatility, we perform extensive studies of TVT on four benchmarks and the experimental results demonstrate that TVT attains significant improvements compared to existing state-of-the-art UDA methods.
We tackle the problem of domain adaptation in object detection, where there is a significant domain shift between a source (a domain with supervision) and a target domain (a domain of interest without supervision). As a widely adopted domain adaptation method, the self-training teacher-student framework (a student model learns from pseudo labels generated from a teacher model) has yielded remarkable accuracy gain on the target domain. However, it still suffers from the large amount of low-quality pseudo labels (e.g., false positives) generated from the teacher due to its bias toward the source domain. To address this issue, we propose a self-training framework called Adaptive Unbiased Teacher (AUT) leveraging adversarial learning and weak-strong data augmentation during mutual learning to address domain shift. Specifically, we employ feature-level adversarial training in the student model, ensuring features extracted from the source and target domains share similar statistics. This enables the student model to capture domain-invariant features. Furthermore, we apply weak-strong augmentation and mutual learning between the teacher model on the target domain and the student model on both domains. This enables the teacher model to gradually benefit from the student model without suffering domain shift. We show that AUT demonstrates superiority over all existing approaches and even Oracle (fully supervised) models by a large margin. For example, we achieve 50.9% (49.3%) mAP on Foggy Cityscape (Clipart1K), which is 9.2% (5.2%) and 8.2% (11.0%) higher than previous state-of-the-art and Oracle, respectively
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
This survey paper specially analyzed computer vision-based object detection challenges and solutions by different techniques. We mainly highlighted object detection by three different trending strategies, i.e., 1) domain adaptive deep learning-based approaches (discrepancy-based, Adversarial-based, Reconstruction-based, Hybrid). We examined general as well as tiny object detection-related challenges and offered solutions by historical and comparative analysis. In part 2) we mainly focused on tiny object detection techniques (multi-scale feature learning, Data augmentation, Training strategy (TS), Context-based detection, GAN-based detection). In part 3), To obtain knowledge-able findings, we discussed different object detection methods, i.e., convolutions and convolutional neural networks (CNN), pooling operations with trending types. Furthermore, we explained results with the help of some object detection algorithms, i.e., R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD, which are generally considered the base bone of CV, CNN, and OD. We performed comparative analysis on different datasets such as MS-COCO, PASCAL VOC07,12, and ImageNet to analyze results and present findings. At the end, we showed future directions with existing challenges of the field. In the future, OD methods and models can be analyzed for real-time object detection, tracking strategies.
Deep learning based object detectors require thousands of diversified bounding box and class annotated examples. Though image object detectors have shown rapid progress in recent years with the release of multiple large-scale static image datasets, object detection on videos still remains an open problem due to scarcity of annotated video frames. Having a robust video object detector is an essential component for video understanding and curating large-scale automated annotations in videos. Domain difference between images and videos makes the transferability of image object detectors to videos sub-optimal. The most common solution is to use weakly supervised annotations where a video frame has to be tagged for presence/absence of object categories. This still takes up manual effort. In this paper we take a step forward by adapting the concept of unsupervised adversarial image-to-image translation to perturb static high quality images to be visually indistinguishable from a set of video frames. We assume the presence of a fully annotated static image dataset and an unannotated video dataset. Object detector is trained on adversarially transformed image dataset using the annotations of the original dataset. Experiments on Youtube-Objects and Youtube-Objects-Subset datasets with two contemporary baseline object detectors reveal that such unsupervised pixel level domain adaptation boosts the generalization performance on video frames compared to direct application of original image object detector. Also, we achieve competitive performance compared to recent baselines of weakly supervised methods. This paper can be seen as an application of image translation for cross domain object detection.
There is growing interest in object detection in advanced driver assistance systems and autonomous robots and vehicles. To enable such innovative systems, we need faster object detection. In this work, we investigate the trade-off between accuracy and speed with domain-specific approximations, i.e. category-aware image size scaling and proposals scaling, for two state-of-the-art deep learning-based object detection meta-architectures. We study the effectiveness of applying approximation both statically and dynamically to understand the potential and the applicability of them. By conducting experiments on the ImageNet VID dataset, we show that domain-specific approximation has great potential to improve the speed of the system without deteriorating the accuracy of object detectors, i.e. up to 7.5x speedup for dynamic domain-specific approximation. To this end, we present our insights toward harvesting domain-specific approximation as well as devise a proof-of-concept runtime, AutoFocus, that exploits dynamic domain-specific approximation.
Can we detect common objects in a variety of image domains without instance-level annotations? In this paper, we present a framework for a novel task, cross-domain weakly supervised object detection, which addresses this question. For this paper, we have access to images with instance-level annotations in a source domain (e.g., natural image) and images with image-level annotations in a target domain (e.g., watercolor). In addition, the classes to be detected in the target domain are all or a subset of those in the source domain. Starting from a fully supervised object detector, which is pre-trained on the source domain, we propose a two-step progressive domain adaptation technique by fine-tuning the detector on two types of artificially and automatically generated samples. We test our methods on our newly collected datasets containing three image domains, and achieve an improvement of approximately 5 to 20 percentage points in terms of mean average precision (mAP) compared to the best-performing baselines.
Recent advances in object detection are mainly driven by deep learning with large-scale detection benchmarks. However, the fully-annotated training set is often limited for a target detection task, which may deteriorate the performance of deep detectors. To address this challenge, we propose a novel low-shot transfer detector (LSTD) in this paper, where we leverage rich source-domain knowledge to construct an effective target-domain detector with very few training examples. The main contributions are described as follows. First, we design a flexible deep architecture of LSTD to alleviate transfer difficulties in low-shot detection. This architecture can integrate the advantages of both SSD and Faster RCNN in a unified deep framework. Second, we introduce a novel regularized transfer learning framework for low-shot detection, where the transfer knowledge (TK) and background depression (BD) regularizations are proposed to leverage object knowledge respectively from source and target domains, in order to further enhance fine-tuning with a few target images. Finally, we examine our LSTD on a number of challenging low-shot detection experiments, where LSTD outperforms other state-of-the-art approaches. The results demonstrate that LSTD is a preferable deep detector for low-shot scenarios.