亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The growing availability of observational databases like electronic health records (EHR) provides unprecedented opportunities for secondary use of such data in biomedical research. However, these data can be error-prone and need to be validated before use. It is usually unrealistic to validate the whole database due to resource constraints. A cost-effective alternative is to implement a two-phase design that validates a subset of patient records that are enriched for information about the research question of interest. Herein, we consider odds ratio estimation under differential outcome and exposure misclassification. We propose optimal designs that minimize the variance of the maximum likelihood odds ratio estimator. We develop a novel adaptive grid search algorithm that can locate the optimal design in a computationally feasible and numerically accurate manner. Because the optimal design requires specification of unknown parameters at the outset and thus is unattainable without prior information, we introduce a multi-wave sampling strategy to approximate it in practice. We demonstrate the efficiency gains of the proposed designs over existing ones through extensive simulations and two large observational studies. We provide an R package and Shiny app to facilitate the use of the optimal designs.

相關內容

Many applications that utilize sensors in mobile devices and apply machine learning to provide novel services have emerged. However, various factors such as different users, devices, environments, and hyperparameters, affect the performance for such applications, thus making the domain shift (i.e., distribution shift of a target user from the training source dataset) an important problem. Although recent domain adaptation techniques attempt to solve this problem, the complex interplay between the diverse factors often limits their effectiveness. We argue that accurately estimating the performance in untrained domains could significantly reduce performance uncertainty. We present DAPPER (Domain AdaPtation Performance EstimatoR) that estimates the adaptation performance in a target domain with only unlabeled target data. Our intuition is that the outputs of a model on the target data provide clues for the model's actual performance in the target domain. DAPPER does not require expensive labeling costs nor involve additional training after deployment. Our evaluation with four real-world sensing datasets compared against four baselines shows that DAPPER outperforms the baselines by on average 17% in estimation accuracy. Moreover, our on-device experiment shows that DAPPER achieves up to 216X less computation overhead compared with the baselines.

In randomized experiments, the actual treatments received by some experimental units may differ from their treatment assignments. This non-compliance issue often occurs in clinical trials, social experiments, and the applications of randomized experiments in many other fields. Under certain assumptions, the average treatment effect for the compliers is identifiable and equal to the ratio of the intention-to-treat effects of the potential outcomes to that of the potential treatment received. To improve the estimation efficiency, we propose three model-assisted estimators for the complier average treatment effect in randomized experiments with a binary outcome. We study their asymptotic properties, compare their efficiencies with that of the Wald estimator, and propose the Neyman-type conservative variance estimators to facilitate valid inferences. Moreover, we extend our methods and theory to estimate the multiplicative complier average treatment effect. Our analysis is randomization-based, allowing the working models to be misspecified. Finally, we conduct simulation studies to illustrate the advantages of the model-assisted methods and apply these analysis methods in a randomized experiment to evaluate the effect of academic services or incentives on academic performance.

Assessing the health of both the fetus and mother is vital in preventing and identifying possible complications in pregnancy. This paper focuses on a device that can be used effectively by the mother herself with minimal supervision and provide a reasonable estimation of fetal and maternal health while being safe, comfortable, and easy to use. The device proposed uses a belt with a single accelerometer over the mother's uterus to record the required information. The device is expected to monitor both the mother and the fetus constantly over a long period and provide medical professionals with useful information, which they would otherwise overlook due to the low frequency that health monitoring is carried out at the present. The paper shows that simultaneous measurement of respiratory information of the mother and fetal movement is in fact possible even in the presence of mild interferences, which needs to be accounted for if the device is expected to be worn for extended times.

We study a pricing setting where each customer is offered a contextualized price based on customer and/or product features that are predictive of the customer's valuation for that product. Often only historical sales records are available, where we observe whether each customer purchased a product at the price prescribed rather than the customer's true valuation. As such, the data is influenced by the historical sales policy which introduces difficulties in a) estimating future loss/regret for pricing policies without the possibility of conducting real experiments and b) optimizing new policies for downstream tasks such as revenue management. We study how to formulate loss functions which can be used for optimizing pricing policies directly, rather than going through an intermediate demand estimation stage, which can be biased in practice due to model misspecification, regularization or poor calibration. While existing approaches have been proposed when valuation data is available, we propose loss functions for the observational data setting. To achieve this, we adapt ideas from machine learning with corrupted labels, where we can consider each observed customer's outcome (purchased or not for a prescribed price), as a (known) probabilistic transformation of the customer's valuation. From this transformation we derive a class of suitable unbiased loss functions. Within this class we identify minimum variance estimators, those which are robust to poor demand function estimation, and provide guidance on when the estimated demand function is useful. Furthermore, we also show that when applied to our contextual pricing setting, estimators popular in the off-policy evaluation literature fall within this class of loss functions, and also offer managerial insights on when each estimator is likely to perform well in practice.

Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying machine learning models in the real world. Previous methods commonly rely on an OOD score derived from the overparameterized weight space, while largely overlooking the role of sparsification. In this paper, we reveal important insights that reliance on unimportant weights and units can directly attribute to the brittleness of OOD detection. To mitigate the issue, we propose a sparsification-based OOD detection framework termed DICE. Our key idea is to rank weights based on a measure of contribution, and selectively use the most salient weights to derive the output for OOD detection. We provide both empirical and theoretical insights, characterizing and explaining the mechanism by which DICE improves OOD detection. By pruning away noisy signals, DICE provably reduces the output variance for OOD data, resulting in a sharper output distribution and stronger separability from ID data. DICE establishes superior performance, reducing the FPR95 by up to 24.69% compared to the previous best method.

Calibration is a vital aspect of the performance of risk prediction models, but research in the context of ordinal outcomes is scarce. This study compared calibration measures for risk models predicting a discrete ordinal outcome, and investigated the impact of the proportional odds assumption on calibration and overfitting. We studied the multinomial, cumulative, adjacent category, continuation ratio, and stereotype logit/logistic models. To assess calibration, we investigated calibration intercepts and slopes, calibration plots, and the estimated calibration index. Using large sample simulations, we studied the performance of models for risk estimation under various conditions, assuming that the true model has either a multinomial logistic form or a cumulative logit proportional odds form. Small sample simulations were used to compare the tendency for overfitting between models. As a case study, we developed models to diagnose the degree of coronary artery disease (five categories) in symptomatic patients. When the true model was multinomial logistic, proportional odds models often yielded poor risk estimates, with calibration slopes deviating considerably from unity even on large model development datasets. The stereotype logistic model improved the calibration slope, but still provided biased risk estimates for individual patients. When the true model had a cumulative logit proportional odds form, multinomial logistic regression provided biased risk estimates, although these biases were modest. Non-proportional odds models require more parameters to be estimated from the data, and hence suffered more from overfitting. Despite larger sample size requirements, we generally recommend multinomial logistic regression for risk prediction modeling of discrete ordinal outcomes.

We propose a novel robust and efficient Speech-to-Animation (S2A) approach for synchronized facial animation generation in human-computer interaction. Compared with conventional approaches, the proposed approach utilize phonetic posteriorgrams (PPGs) of spoken phonemes as input to ensure the cross-language and cross-speaker ability, and introduce corresponding prosody features (i.e. pitch and energy) to further enhance the expression of generated animation. Mixtureof-experts (MOE)-based Transformer is employed to better model contextual information while provide significant optimization on computation efficiency. Experiments demonstrate the effectiveness of the proposed approach on both objective and subjective evaluation with 17x inference speedup compared with the state-of-the-art approach.

Return-to-baseline is an important method to impute missing values or unobserved potential outcomes when certain hypothetical strategies are used to handle intercurrent events in clinical trials. Current return-to-baseline approaches seen in literature and in practice inflate the variability of the "complete" dataset after imputation and lead to biased mean estimators {when the probability of missingness depends on the observed baseline and/or postbaseline intermediate outcomes}. In this article, we first provide a set of criteria a return-to-baseline imputation method should satisfy. Under this framework, we propose a novel return-to-baseline imputation method. Simulations show the completed data after the new imputation approach have the proper distribution, and the estimators based on the new imputation method outperform the traditional method in terms of both bias and variance, when missingness depends on the observed values. The new method can be implemented easily with the existing multiple imputation procedures in commonly used statistical packages.

One of the key steps in Neural Architecture Search (NAS) is to estimate the performance of candidate architectures. Existing methods either directly use the validation performance or learn a predictor to estimate the performance. However, these methods can be either computationally expensive or very inaccurate, which may severely affect the search efficiency and performance. Moreover, as it is very difficult to annotate architectures with accurate performance on specific tasks, learning a promising performance predictor is often non-trivial due to the lack of labeled data. In this paper, we argue that it may not be necessary to estimate the absolute performance for NAS. On the contrary, we may need only to understand whether an architecture is better than a baseline one. However, how to exploit this comparison information as the reward and how to well use the limited labeled data remains two great challenges. In this paper, we propose a novel Contrastive Neural Architecture Search (CTNAS) method which performs architecture search by taking the comparison results between architectures as the reward. Specifically, we design and learn a Neural Architecture Comparator (NAC) to compute the probability of candidate architectures being better than a baseline one. Moreover, we present a baseline updating scheme to improve the baseline iteratively in a curriculum learning manner. More critically, we theoretically show that learning NAC is equivalent to optimizing the ranking over architectures. Extensive experiments in three search spaces demonstrate the superiority of our CTNAS over existing methods.

Many problems on signal processing reduce to nonparametric function estimation. We propose a new methodology, piecewise convex fitting (PCF), and give a two-stage adaptive estimate. In the first stage, the number and location of the change points is estimated using strong smoothing. In the second stage, a constrained smoothing spline fit is performed with the smoothing level chosen to minimize the MSE. The imposed constraint is that a single change point occurs in a region about each empirical change point of the first-stage estimate. This constraint is equivalent to requiring that the third derivative of the second-stage estimate has a single sign in a small neighborhood about each first-stage change point. We sketch how PCF may be applied to signal recovery, instantaneous frequency estimation, surface reconstruction, image segmentation, spectral estimation and multivariate adaptive regression.

北京阿比特科技有限公司