亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the rapid development of smart manufacturing, data-driven machinery health management has been of growing attention. In situations where some classes are more difficult to be distinguished compared to others and where classes might be organised in a hierarchy of categories, current DL methods can not work well. In this study, a novel hierarchical cavitation intensity recognition framework using Sub-Main Transfer Network, termed SMTNet, is proposed to classify acoustic signals of valve cavitation. SMTNet model outputs multiple predictions ordered from coarse to fine along a network corresponding to a hierarchy of target cavitation states. Firstly, a data augmentation method based on Sliding Window with Fast Fourier Transform (Swin-FFT) is developed to solve few-shot problem. Secondly, a 1-D double hierarchical residual block (1-D DHRB) is presented to capture sensitive features of the frequency domain valve acoustic signals. Thirdly, hierarchical multi-label tree is proposed to assist the embedding of the semantic structure of target cavitation states into SMTNet. Fourthly, experience filtering mechanism is proposed to fully learn a prior knowledge of cavitation detection model. Finally, SMTNet has been evaluated on two cavitation datasets without noise (Dataset 1 and Dataset 2), and one cavitation dataset with real noise (Dataset 3) provided by SAMSON AG (Frankfurt). The prediction accurcies of SMTNet for cavitation intensity recognition are as high as 95.32%, 97.16% and 100%, respectively. At the same time, the testing accuracies of SMTNet for cavitation detection are as high as 97.02%, 97.64% and 100%. In addition, SMTNet has also been tested for different frequencies of samples and has achieved excellent results of the highest frequency of samples of mobile phones.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會(hui)議。 Publisher:IFIP。 SIT:

In unsupervised scenarios, deep contrastive multi-view clustering (DCMVC) is becoming a hot research spot, which aims to mine the potential relationships between different views. Most existing DCMVC algorithms focus on exploring the consistency information for the deep semantic features, while ignoring the diverse information on shallow features. To fill this gap, we propose a novel multi-view clustering network termed CodingNet to explore the diverse and consistent information simultaneously in this paper. Specifically, instead of utilizing the conventional auto-encoder, we design an asymmetric structure network to extract shallow and deep features separately. Then, by aligning the similarity matrix on the shallow feature to the zero matrix, we ensure the diversity for the shallow features, thus offering a better description of multi-view data. Moreover, we propose a dual contrastive mechanism that maintains consistency for deep features at both view-feature and pseudo-label levels. Our framework's efficacy is validated through extensive experiments on six widely used benchmark datasets, outperforming most state-of-the-art multi-view clustering algorithms.

The optimal operation of water reservoir systems is a challenging task involving multiple conflicting objectives. The main source of complexity is the presence of the water inflow, which acts as an exogenous, highly uncertain disturbance on the system. When model predictive control (MPC) is employed, the optimal water release is usually computed based on the (predicted) trajectory of the inflow. This choice may jeopardize the closed-loop performance when the actual inflow differs from its forecast. In this work, we consider - for the first time - a stochastic MPC approach for water reservoirs, in which the control is optimized based on a set of plausible future inflows directly generated from past data. Such a scenario-based MPC strategy allows the controller to be more cautious, counteracting droughty periods (e.g., the lake level going below the dry limit) while at the same time guaranteeing that the agricultural water demand is satisfied. The method's effectiveness is validated through extensive Monte Carlo tests using actual inflow data from Lake Como, Italy.

In this work, we propose a fast adaptive federated meta-learning (FAM) framework for collaboratively learning a single global model, which can then be personalized locally on individual clients. Federated learning enables multiple clients to collaborate to train a model without sharing data. Clients with insufficient data or data diversity participate in federated learning to learn a model with superior performance. Nonetheless, learning suffers when data distributions diverge. There is a need to learn a global model that can be adapted using client's specific information to create personalized models on clients is required. MRI data suffers from this problem, wherein, one, due to data acquisition challenges, local data at a site is sufficient for training an accurate model and two, there is a restriction of data sharing due to privacy concerns and three, there is a need for personalization of a learnt shared global model on account of domain shift across client sites. The global model is sparse and captures the common features in the MRI. This skeleton network is grown on each client to train a personalized model by learning additional client-specific parameters from local data. Experimental results show that the personalization process at each client quickly converges using a limited number of epochs. The personalized client models outperformed the locally trained models, demonstrating the efficacy of the FAM mechanism. Additionally, the sparse parameter set to be communicated during federated learning drastically reduced communication overhead, which makes the scheme viable for networks with limited resources.

This study proposed a YOLOv5-based custom object detection model to detect strawberries in an outdoor environment. The original architecture of the YOLOv5s was modified by replacing the C3 module with the C2f module in the backbone network, which provided a better feature gradient flow. Secondly, the Spatial Pyramid Pooling Fast in the final layer of the backbone network of YOLOv5s was combined with Cross Stage Partial Net to improve the generalization ability over the strawberry dataset in this study. The proposed architecture was named YOLOv5s-Straw. The RGB images dataset of the strawberry canopy with three maturity classes (immature, nearly mature, and mature) was collected in open-field environment and augmented through a series of operations including brightness reduction, brightness increase, and noise adding. To verify the superiority of the proposed method for strawberry detection in open-field environment, four competitive detection models (YOLOv3-tiny, YOLOv5s, YOLOv5s-C2f, and YOLOv8s) were trained, and tested under the same computational environment and compared with YOLOv5s-Straw. The results showed that the highest mean average precision of 80.3% was achieved using the proposed architecture whereas the same was achieved with YOLOv3-tiny, YOLOv5s, YOLOv5s-C2f, and YOLOv8s were 73.4%, 77.8%, 79.8%, 79.3%, respectively. Specifically, the average precision of YOLOv5s-Straw was 82.1% in the immature class, 73.5% in the nearly mature class, and 86.6% in the mature class, which were 2.3% and 3.7%, respectively, higher than that of the latest YOLOv8s. The model included 8.6*10^6 network parameters with an inference speed of 18ms per image while the inference speed of YOLOv8s had a slower inference speed of 21.0ms and heavy parameters of 11.1*10^6, which indicates that the proposed model is fast enough for real time strawberry detection and localization for the robotic picking.

With the development of the electric power system, the smart grid has become an important part of the smart city. The rational transmission of electric energy and the guarantee of power supply of the smart grid are very important to smart cities, smart cities can provide better services through smart grids. Among them, predicting and judging city electric power consumption is closely related to electricity supply and regulation, the location of power plants, and the control of electricity transmission losses. Based on big data, this paper establishes a neural network and considers the influence of various nonlinear factors on city electric power consumption. A model is established to realize the prediction of power consumption. Based on the permutation importance test, an evaluation model of the influencing factors of city electric power consumption is constructed to obtain the core characteristic values of city electric power consumption prediction, which can provide an important reference for electric power related industry.

For multivariate data with noise variables, tandem clustering is a well-known technique that aims to improve cluster identification by first reducing the dimension. However, the usual approach using principal component analysis (PCA) has been criticized for focusing only on inertia so that the first components do not necessarily retain the structure of interest for clustering. To overcome this drawback, a new tandem clustering approach based on invariant coordinate selection (ICS) is proposed. By jointly diagonalizing two scatter matrices, ICS is designed to find structure in the data while returning affine invariant components. Some theoretical results have already been derived and guarantee that under some elliptical mixture models, the group structure can be highlighted on a subset of the first and/or last components. Nevertheless, ICS has received little attention in a clustering context. Two challenges are the choice of the pair of scatter matrices and the selection of the components to retain. For clustering purposes, it is demonstrated that the best scatter pairs consist of one scatter matrix that captures the within-cluster structure and another that captures the global structure. For the former, local shape or pairwise scatters are of great interest, as is the minimum covariance determinant (MCD) estimator based on a carefully selected subset size that is smaller than usual. The performance of ICS as a dimension reduction method is evaluated in terms of preserving the cluster structure present in data. In an extensive simulation study and in empirical applications with benchmark data sets, different combinations of scatter matrices as well as component selection criteria are compared in situations with and without outliers. Overall, the new approach of tandem clustering with ICS shows promising results and clearly outperforms the approach with PCA.

With the growing imbalance between limited medical resources and escalating demands, AI-based clinical tasks have become paramount. Medication recommendation, as a sub-domain, aims to amalgamate longitudinal patient history with medical knowledge, assisting physicians in prescribing safer and more accurate medication combinations. Existing methods overlook the inherent long-tail distribution in medical data, lacking balanced representation between head and tail data, which leads to sub-optimal model performance. To address this challenge, we introduce StratMed, a model that incorporates an innovative relevance stratification mechanism. It harmonizes discrepancies in data long-tail distribution and strikes a balance between the safety and accuracy of medication combinations. Specifically, we first construct a pre-training method using deep learning networks to obtain entity representation. After that, we design a pyramid-like data stratification method to obtain more generalized entity relationships by reinforcing the features of unpopular entities. Based on this relationship, we designed two graph structures to express medication precision and safety at the same level to obtain visit representations. Finally, the patient's historical clinical information is fitted to generate medication combinations for the current health condition. Experiments on the MIMIC-III dataset demonstrate that our method has outperformed current state-of-the-art methods in four evaluation metrics (including safety and accuracy).

In spatial regression models, spatial heterogeneity may be considered with either continuous or discrete specifications. The latter is related to delineation of spatially connected regions with homogeneous relationships between variables (spatial regimes). Although various regionalization algorithms have been proposed and studied in the field of spatial analytics, methods to optimize spatial regimes have been largely unexplored. In this paper, we propose two new algorithms for spatial regime delineation, two-stage K-Models and Regional-K-Models. We also extend the classic Automatic Zoning Procedure to spatial regression context. The proposed algorithms are applied to a series of synthetic datasets and two real-world datasets. Results indicate that all three algorithms achieve superior or comparable performance to existing approaches, while the two-stage K-Models algorithm largely outperforms existing approaches on model fitting, region reconstruction, and coefficient estimation. Our work enriches the spatial analytics toolbox to explore spatial heterogeneous processes.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司