亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the development of the electric power system, the smart grid has become an important part of the smart city. The rational transmission of electric energy and the guarantee of power supply of the smart grid are very important to smart cities, smart cities can provide better services through smart grids. Among them, predicting and judging city electric power consumption is closely related to electricity supply and regulation, the location of power plants, and the control of electricity transmission losses. Based on big data, this paper establishes a neural network and considers the influence of various nonlinear factors on city electric power consumption. A model is established to realize the prediction of power consumption. Based on the permutation importance test, an evaluation model of the influencing factors of city electric power consumption is constructed to obtain the core characteristic values of city electric power consumption prediction, which can provide an important reference for electric power related industry.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Friction drag from a turbulent fluid moving past or inside an object plays a crucial role in domains as diverse as transportation, public utility infrastructure, energy technology, and human health. As a direct measure of the shear-induced friction forces, an accurate prediction of the wall-shear stress can contribute to sustainability, conservation of resources, and carbon neutrality in civil aviation as well as enhanced medical treatment of vascular diseases and cancer. Despite such importance for our modern society, we still lack adequate experimental methods to capture the instantaneous wall-shear stress dynamics. In this contribution, we present a holistic approach that derives velocity and wall-shear stress fields with impressive spatial and temporal resolution from flow measurements using a deep optical flow estimator with physical knowledge. The validity and physical correctness of the derived flow quantities is demonstrated with synthetic and real-world experimental data covering a range of relevant fluid flows.

Due to the large volume of recording, the complete spontaneity, and the flexible pick-up and drop-off locations, taxi data portrays a realistic and detailed picture of urban space use to a certain extent. The spatial arrangement of pick-up and drop-off hotspots reflects the organizational space, which has received attention in urban structure studies. Previous studies mainly explore the hotspots at a large scale by visual analysis or some simple indexes, where the hotspots usually cover the entire central business district, train stations, or dense residential areas, reaching a radius of hundreds or even thousands of meters. However, the spatial arrangement patterns of small-scale hotspots, reflecting the specific popular pick-up and drop-off locations, have not received much attention. Using two taxi trajectory datasets in Wuhan and Beijing, China, this study quantitatively explores the spatial arrangement of fine-grained pick-up and drop-off local hotspots with different levels of popularity, where the sizes are adaptively set as 90m*90m in Wuhan and 105m*105m in Beijing according to the local hotspot identification method. Results show that popular hotspots tend to be surrounded by less popular hotspots, but the existence of less popular hotspots is inhibited in regions with a large number of popular hotspots. We use the terms hierarchical accompany and inhibiting patterns for these two spatial configurations. Finally, to uncover the underlying mechanism, a KNN-based model is proposed to reproduce the spatial distribution of other less popular hotspots according to the most popular ones. These findings help decision-makers construct reasonable urban minimum units for precise traffic and disease control, as well as plan a more humane spatial arrangement of points of interest.

The remarkable success of deep neural networks (DNN) is often attributed to their high expressive power and their ability to approximate functions of arbitrary complexity. Indeed, DNNs are highly non-linear models, and activation functions introduced into them are largely responsible for this. While many works studied the expressive power of DNNs through the lens of their approximation capabilities, quantifying the non-linearity of DNNs or of individual activation functions remains an open problem. In this paper, we propose the first theoretically sound solution to track non-linearity propagation in deep neural networks with a specific focus on computer vision applications. Our proposed affinity score allows us to gain insights into the inner workings of a wide range of different architectures and learning paradigms. We provide extensive experimental results that highlight the practical utility of the proposed affinity score and its potential for long-reaching applications.

We describe an architecture for a decentralised data market for applications in which agents are incentivised to collaborate to crowd-source their data. The architecture is designed to reward data that furthers the market's collective goal, and distributes reward fairly to all those that contribute with their data. We show that the architecture is resilient to Sybil, wormhole, and data poisoning attacks. In order to evaluate the resilience of the architecture, we characterise its breakdown points for various adversarial threat models in an automotive use case.

Knowledge representation (KR) is vital in designing symbolic notations to represent real-world facts and facilitate automated decision-making tasks. Knowledge graphs (KGs) have emerged so far as a popular form of KR, offering a contextual and human-like representation of knowledge. In international economics, KGs have proven valuable in capturing complex interactions between commodities, companies, and countries. By putting the gravity model, which is a common economic framework, into the process of building KGs, important factors that affect trade relationships can be taken into account, making it possible to predict international trade patterns. This paper proposes an approach that leverages Knowledge Graph embeddings for modeling international trade, focusing on link prediction using embeddings. Thus, valuable insights are offered to policymakers, businesses, and economists, enabling them to anticipate the effects of changes in the international trade system. Moreover, the integration of traditional machine learning methods with KG embeddings, such as decision trees and graph neural networks are also explored. The research findings demonstrate the potential for improving prediction accuracy and provide insights into embedding explainability in knowledge representation. The paper also presents a comprehensive analysis of the influence of embedding methods on other intelligent algorithms.

Finding the optimal design of experiments in the Bayesian setting typically requires estimation and optimization of the expected information gain functional. This functional consists of one outer and one inner integral, separated by the logarithm function applied to the inner integral. When the mathematical model of the experiment contains uncertainty about the parameters of interest and nuisance uncertainty, (i.e., uncertainty about parameters that affect the model but are not themselves of interest to the experimenter), two inner integrals must be estimated. Thus, the already considerable computational effort required to determine good approximations of the expected information gain is increased further. The Laplace approximation has been applied successfully in the context of experimental design in various ways, and we propose two novel estimators featuring the Laplace approximation to alleviate the computational burden of both inner integrals considerably. The first estimator applies Laplace's method followed by a Laplace approximation, introducing a bias. The second estimator uses two Laplace approximations as importance sampling measures for Monte Carlo approximations of the inner integrals. Both estimators use Monte Carlo approximation for the remaining outer integral estimation. We provide three numerical examples demonstrating the applicability and effectiveness of our proposed estimators.

We show how quantum-inspired 2d tensor networks can be used to efficiently and accurately simulate the largest quantum processors from IBM, namely Eagle (127 qubits), Osprey (433 qubits) and Condor (1121 qubits). We simulate the dynamics of a complex quantum many-body system -- specifically, the kicked Ising experiment considered recently by IBM in Nature 618, p. 500-505 (2023) -- using graph-based Projected Entangled Pair States (gPEPS), which was proposed by some of us in PRB 99, 195105 (2019). Our results show that simple tensor updates are already sufficient to achieve very large unprecedented accuracy with remarkably low computational resources for this model. Apart from simulating the original experiment for 127 qubits, we also extend our results to 433 and 1121 qubits, and for evolution times around 8 times longer, thus setting a benchmark for the newest IBM quantum machines. We also report accurate simulations for infinitely-many qubits. Our results show that gPEPS are a natural tool to efficiently simulate quantum computers with an underlying lattice-based qubit connectivity, such as all quantum processors based on superconducting qubits.

Bipartite networks are a natural representation of the interactions between entities from two different types. The organization (or topology) of such networks gives insight to understand the systems they describe as a whole. Here, we rely on motifs which provide a meso-scale description of the topology. Moreover, we consider the bipartite expected degree distribution (B-EDD) model which accounts for both the density of the network and possible imbalances between the degrees of the nodes. Under the B-EDD model, we prove the asymptotic normality of the count of any given motif, considering sparsity conditions. We also provide close-form expressions for the mean and the variance of this count. This allows to avoid computationally prohibitive resampling procedures. Based on these results, we define a goodness-of-fit test for the B-EDD model and propose a family of tests for network comparisons. We assess the asymptotic normality of the test statistics and the power of the proposed tests on synthetic experiments and illustrate their use on ecological data sets.

We study the effect of using weaker forms of data-fidelity terms in generalized Tikhonov regularization accounting for model uncertainties. We show that relaxed data-consistency conditions can be beneficial for integrating available prior knowledge.

Community detection is a crucial task to unravel the intricate dynamics of online social networks. The emergence of these networks has dramatically increased the volume and speed of interactions among users, presenting researchers with unprecedented opportunities to explore and analyze the underlying structure of social communities. Despite a growing interest in tracking the evolution of groups of users in real-world social networks, the predominant focus of community detection efforts has been on communities within static networks. In this paper, we introduce a novel framework for tracking communities over time in a dynamic network, where a series of significant events is identified for each community. Our framework adopts a modularity-based strategy and does not require a predefined threshold, leading to a more accurate and robust tracking of dynamic communities. We validated the efficacy of our framework through extensive experiments on synthetic networks featuring embedded events. The results indicate that our framework can outperform the state-of-the-art methods. Furthermore, we utilized the proposed approach on a Twitter network comprising over 60,000 users and 5 million tweets throughout 2020, showcasing its potential in identifying dynamic communities in real-world scenarios. The proposed framework can be applied to different social networks and provides a valuable tool to gain deeper insights into the evolution of communities in dynamic social networks.

北京阿比特科技有限公司