We revisit the relation between the gradient-flow equations and Hamilton's equations in information geometry. By regarding the gradient-flow equations as Huygens' equations in geometric optics, we have related the gradient flows to the geodesic flows induced by the geodesic Hamiltonian in an appropriate Riemannian geometry. The original evolution parameter $\textit{t}$ in the gradient-flow equations is related to the arc-length parameter in the associated Riemannian manifold by Jacobi-Maupertuis transformation. As a by-product, it is found the relation between the gradient-flow equation and replicator equations.
The subpower membership problem SMP(A) of a finite algebraic structure A asks whether a given partial function from A^k to A can be interpolated by a term operation of A, or not. While this problem can be EXPTIME-complete in general, Willard asked whether it is always solvable in polynomial time if A is a Mal'tsev algebras. In particular, this includes many important structures studied in abstract algebra, such as groups, quasigroups, rings, Boolean algebras. In this paper we give an affirmative answer to Willard's question for a big class of 2-nilpotent Mal'tsev algebras. We furthermore develop tools that might be essential in answering the question for general nilpotent Mal'tsev algebras in the future.
The convergence of the first order Euler scheme and an approximative variant thereof, along with convergence rates, are established for rough differential equations driven by c\`adl\`ag paths satisfying a suitable criterion, namely the so-called Property (RIE), along time discretizations with vanishing mesh size. This property is then verified for almost all sample paths of Brownian motion, It\^o processes, L\'evy processes and general c\`adl\`ag semimartingales, as well as the driving signals of both mixed and rough stochastic differential equations, relative to various time discretizations. Consequently, we obtain pathwise convergence in p-variation of the Euler--Maruyama scheme for stochastic differential equations driven by these processes.
The nonlinear Poisson-Boltzmann equation (NPBE) is an elliptic partial differential equation used in applications such as protein interactions and biophysical chemistry (among many others). It describes the nonlinear electrostatic potential of charged bodies submerged in an ionic solution. The kinetic presence of the solvent molecules introduces randomness to the shape of a protein, and thus a more accurate model that incorporates these random perturbations of the domain is analyzed to compute the statistics of quantities of interest of the solution. When the parameterization of the random perturbations is high-dimensional, this calculation is intractable as it is subject to the curse of dimensionality. However, if the solution of the NPBE varies analytically with respect to the random parameters, the problem becomes amenable to techniques such as sparse grids and deep neural networks. In this paper, we show analyticity of the solution of the NPBE with respect to analytic perturbations of the domain by using the analytic implicit function theorem and the domain mapping method. Previous works have shown analyticity of solutions to linear elliptic equations but not for nonlinear problems. We further show how to derive \emph{a priori} bounds on the size of the region of analyticity. This method is applied to the trypsin molecule to demonstrate that the convergence rates of the quantity of interest are consistent with the analyticity result. Furthermore, the approach developed here is sufficiently general enough to be applied to other nonlinear problems in uncertainty quantification.
We derive and analyse well-posed boundary conditions for the linear shallow water wave equation. The analysis is based on the energy method and it identifies the number, location and form of the boundary conditions so that the initial boundary value problem is well-posed. A finite volume method is developed based on the summation-by-parts framework with the boundary conditions implemented weakly using penalties. Stability is proven by deriving a discrete energy estimate analogous to the continuous estimate. The continuous and discrete analysis covers all flow regimes. Numerical experiments are presented verifying the analysis.
In the present paper, we study a multipoint boundary value problem for a system of Fredholm integro-differenial equations by the method of parameterization. The case of a degenerate kernel is studied separately, for which we obtain well-posedness conditions and propose some algorithms to find approximate and numerical solutions to the problem. Then we establish necessary and sufficient conditions for the well-posedness of the multipoint problem for the system of Fredholm integro-differential equations and develop some algorithms for finding its approximate solutions. These algorithms are based on the solutions of an approximating problem for the system of integro-differential equations with degenerate kernel.
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed linear reaction-advection-diffusion (RAD) PDE models. We show that the differential algebra approach can always, in theory, be applied to linear RAD models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease structural identifiability. Finally, we show that our approach can also be applied to a class of non-linear PDE models that are linear in the unobserved variables, and conclude by discussing future possibilities and computational cost of performing structural identifiability analysis on more general PDE models in mathematical biology.
In the area of query complexity of Boolean functions, the most widely studied cost measure of an algorithm is the worst-case number of queries made by it on an input. Motivated by the most natural cost measure studied in online algorithms, the competitive ratio, we consider a different cost measure for query algorithms for Boolean functions that captures the ratio of the cost of the algorithm and the cost of an optimal algorithm that knows the input in advance. The cost of an algorithm is its largest cost over all inputs. Grossman, Komargodski and Naor [ITCS'20] introduced this measure for Boolean functions, and dubbed it instance complexity. Grossman et al. showed, among other results, that monotone Boolean functions with instance complexity 1 are precisely those that depend on one or two variables. We complement the above-mentioned result of Grossman et al. by completely characterizing the instance complexity of symmetric Boolean functions. As a corollary we conclude that the only symmetric Boolean functions with instance complexity 1 are the Parity function and its complement. We also study the instance complexity of some graph properties like Connectivity and k-clique containment. In all the Boolean functions we study above, and those studied by Grossman et al., the instance complexity turns out to be the ratio of query complexity to minimum certificate complexity. It is a natural question to ask if this is the correct bound for all Boolean functions. We show a negative answer in a very strong sense, by analyzing the instance complexity of the Greater-Than and Odd-Max-Bit functions. We show that the above-mentioned ratio is linear in the input size for both of these functions, while we exhibit algorithms for which the instance complexity is a constant.
This paper introduces novel weighted conformal p-values and methods for model-free selective inference. The problem is as follows: given test units with covariates $X$ and missing responses $Y$, how do we select units for which the responses $Y$ are larger than user-specified values while controlling the proportion of false positives? Can we achieve this without any modeling assumptions on the data and without any restriction on the model for predicting the responses? Last, methods should be applicable when there is a covariate shift between training and test data, which commonly occurs in practice. We answer these questions by first leveraging any prediction model to produce a class of well-calibrated weighted conformal p-values, which control the type-I error in detecting a large response. These p-values cannot be passed on to classical multiple testing procedures since they may not obey a well-known positive dependence property. Hence, we introduce weighted conformalized selection (WCS), a new procedure which controls false discovery rate (FDR) in finite samples. Besides prediction-assisted candidate selection, WCS (1) allows to infer multiple individual treatment effects, and (2) extends to outlier detection with inlier distributions shifts. We demonstrate performance via simulations and applications to causal inference, drug discovery, and outlier detection datasets.
For an approximate solution of the non-stationary nonlinear Navier-Stokes equations for the flow of an incompressible viscous fluid, depending on the set of input data and the geometry of the domain, the area of optimal parameters in the variables $\nu$ and $\nu^{\ast}$ is experimentally determined depending on $\delta$ included in the definition of the $R_{\nu}$-generalized solution of the problem and the degree of the weight function in the basis of the finite element method. To discretize the problem in time, the Runge-Kutta methods of the first and second orders were used. The areas of optimal parameters for various values of the incoming angles are established.
We consider the problem of estimating the marginal independence structure of a Bayesian network from observational data in the form of an undirected graph called the unconditional dependence graph. We show that unconditional dependence graphs of Bayesian networks correspond to the graphs having equal independence and intersection numbers. Using this observation, a Gr\"obner basis for a toric ideal associated to unconditional dependence graphs of Bayesian networks is given and then extended by additional binomial relations to connect the space of all such graphs. An MCMC method, called GrUES (Gr\"obner-based Unconditional Equivalence Search), is implemented based on the resulting moves and applied to synthetic Gaussian data. GrUES recovers the true marginal independence structure via a penalized maximum likelihood or MAP estimate at a higher rate than simple independence tests while also yielding an estimate of the posterior, for which the $20\%$ HPD credible sets include the true structure at a high rate for data-generating graphs with density at least $0.5$.