亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a parametric modelling approach for survival data where covariates are allowed to enter the model through multiple distributional parameters, i.e., scale and shape. This is in contrast with the standard convention of having a single covariate-dependent parameter, typically the scale. Taking what is referred to as a multi-parameter regression (MPR) approach to modelling has been shown to produce flexible and robust models with relatively low model complexity cost. However, it is very common to have clustered data arising from survival analysis studies, and this is something that is under developed in the MPR context. The purpose of this article is to extend MPR models to handle multivariate survival data by introducing random effects in both the scale and the shape regression components. We consider a variety of possible dependence structures for these random effects (independent, shared, and correlated), and estimation proceeds using a h-likelihood approach. The performance of our estimation procedure is investigated by a way of an extensive simulation study, and the merits of our modelling approach are illustrated through applications to two real data examples, a lung cancer dataset and a bladder cancer dataset.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 正則化項 · Weight · 線性的 · 線性回歸 ·
2022 年 1 月 21 日

We consider the problem of finding tuned regularized parameter estimators for linear models. We start by showing that three known optimal linear estimators belong to a wider class of estimators that can be formulated as a solution to a weighted and constrained minimization problem. The optimal weights, however, are typically unknown in many applications. This begs the question, how should we choose the weights using only the data? We propose using the covariance fitting SPICE-methodology to obtain data-adaptive weights and show that the resulting class of estimators yields tuned versions of known regularized estimators - such as ridge regression, LASSO, and regularized least absolute deviation. These theoretical results unify several important estimators under a common umbrella. The resulting tuned estimators are also shown to be practically relevant by means of a number of numerical examples.

Multilevel regression and poststratification (MRP) is a flexible modeling technique that has been used in a broad range of small-area estimation problems. Traditionally, MRP studies have been focused on non-causal settings, where estimating a single population value using a nonrepresentative sample was of primary interest. In this manuscript, MRP-style estimators will be evaluated in an experimental causal inference setting. We simulate a large-scale randomized control trial with a stratified cluster sampling design, and compare traditional and nonparametric treatment effect estimation methods with MRP methodology. Using MRP-style estimators, treatment effect estimates for areas as small as 1.3$\%$ of the population have lower bias and variance than standard causal inference methods, even in the presence of treatment effect heterogeneity. The design of our simulation studies also requires us to build upon a MRP variant that allows for non-census covariates to be incorporated into poststratification.

Accelerometers enable an objective measurement of physical activity levels among groups of individuals in free-living environments, providing high-resolution detail about physical activity changes at different time scales. Current approaches used in the literature for analyzing such data typically employ summary measures such as total inactivity time or compositional metrics. However, at the conceptual level, these methods have the potential disadvantage of discarding important information from recorded data when calculating these summaries and metrics since these typically depend on cut-offs related to exercise intensity zones chosen subjectively or even arbitrarily. Furthermore, much of the data collected in these studies follow complex survey designs. Then, using specific estimation strategies adapted to a particular sampling mechanism is mandatory. The aim of this paper is two-fold. First, a new functional representation of a distributional nature accelerometer data is introduced to build a complete individualized profile of each subject's physical activity levels. Second, we extend two nonparametric functional regression models, kernel smoothing and kernel ridge regression, to handle survey data and obtain reliable conclusions about the influence of physical activity in the different analyses performed in the complex sampling design NHANES cohort and so, show representation advantages.

This paper proposes a general procedure to analyse high-dimensional spatio-temporal count data, with special emphasis on relative risks estimation in cancer epidemiology. Model fitting is carried out using integrated nested Laplace approximations over a partition of the spatio-temporal domain. This is a simple idea that works very well in this context as the models are defined to borrow strength locally in space and time, providing reliable risk estimates. Parallel and distributed strategies are proposed to speed up computations in a setting where Bayesian model fitting is generally prohibitively time-consuming and even unfeasible. We evaluate the whole procedure in a simulation study with a twofold objective: to estimate risks accurately and to detect extreme risk areas while avoiding false positives/negatives. We show that our method outperforms classical global models. A real data analysis comparing the global models and the new procedure is also presented.

This paper studies the inference of the regression coefficient matrix under multivariate response linear regressions in the presence of hidden variables. A novel procedure for constructing confidence intervals of entries of the coefficient matrix is proposed. Our method first utilizes the multivariate nature of the responses by estimating and adjusting the hidden effect to construct an initial estimator of the coefficient matrix. By further deploying a low-dimensional projection procedure to reduce the bias introduced by the regularization in the previous step, a refined estimator is proposed and shown to be asymptotically normal. The asymptotic variance of the resulting estimator is derived with closed-form expression and can be consistently estimated. In addition, we propose a testing procedure for the existence of hidden effects and provide its theoretical justification. Both our procedures and their analyses are valid even when the feature dimension and the number of responses exceed the sample size. Our results are further backed up via extensive simulations and a real data analysis.

The Student-$t$ distribution is widely used in statistical modeling of datasets involving outliers since its longer-than-normal tails provide a robust approach to hand such data. Furthermore, data collected over time may contain censored or missing observations, making it impossible to use standard statistical procedures. This paper proposes an algorithm to estimate the parameters of a censored linear regression model when the regression errors are autocorrelated and the innovations follow a Student-$t$ distribution. To fit the proposed model, maximum likelihood estimates are obtained throughout the SAEM algorithm, which is a stochastic approximation of the EM algorithm useful for models in which the E-step does not have an analytic form. The methods are illustrated by the analysis of a real dataset that has left-censored and missing observations. We also conducted two simulations studies to examine the asymptotic properties of the estimates and the robustness of the model.

The software package $\texttt{mstate}$, in articulation with the package $\texttt{survival}$, provides not only a well-established multi-state survival analysis framework in R, but also one of the most complete, as it includes point and interval estimation of relative transition hazards, cumulative transition hazards and state occupation probabilities, both under clock-forward and clock-reset models; personalised estimates, i.e. estimates for an individual with specific covariate measurements, can also be obtained with $\texttt{mstate}$ by fitting a Cox regression model. The new R package $\texttt{ebmstate}$, which we present in the current paper, is an extension of $\texttt{mstate}$ and, to our knowledge, the first R package for multi-state model estimation that is suitable for higher-dimensional data and complete in the sense just mentioned. Its extension of $\texttt{mstate}$ is threefold: it transforms the Cox model into a regularised, empirical Bayes model that performs significantly better with higher-dimensional data; it replaces asymptotic confidence intervals meant for the low-dimensional setting by non-parametric bootstrap confidence intervals; and it introduces an analytical, Fourier transform-based estimator of state occupation probabilities for clock-reset models that is substantially faster than the corresponding, simulation-based estimator in $\texttt{mstate}$. The present paper includes a detailed tutorial on how to use our package to estimate transition hazards and state occupation probabilities, as well as a simulation study showing how it improves the performance of $\texttt{mstate}$.

Alzheimer's disease is a neurodegenerative condition that accelerates cognitive decline relative to normal aging. It is of critical scientific importance to gain a better understanding of early disease mechanisms in the brain to facilitate effective, targeted therapies. The volume of the hippocampus is often used in diagnosis and monitoring of the disease. Measuring this volume via neuroimaging is difficult since each hippocampus must either be manually identified or automatically delineated, a task referred to as segmentation. Automatic hippocampal segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each hippocampus is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms employ voting procedures with voting weights assigned directly or estimated via optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. Our results suggest that incorporating tissue classification (e.g, gray matter) into the label fusion procedure can greatly improve segmentation when relatively homogeneous, healthy brains are used as atlases for diseased brains. The fully Bayesian approach also produces meaningful uncertainty measures about hippocampal volumes, information which can be leveraged to detect significant, scientifically meaningful differences between healthy and diseased populations, improving the potential for early detection and tracking of the disease.

We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司