亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There has been a significant amount of interest regarding the use of diversity-based testing techniques in software testing over the past two decades. Diversity-based testing (DBT) technique uses similarity metrics to leverage the dissimilarity between software artefacts - such as requirements, abstract models, program structures, or inputs - in order to address a software testing problem. DBT techniques have been used to assist in finding solutions to several different types of problems including generating test cases, prioritising them, and reducing very large test suites. This paper is a systematic survey of DBT techniques that summarises the key aspects and trends of 144 papers that report the use of 70 different similarity metrics with 24 different types of software artefacts, which have been used by researchers to tackle 11 different types of software testing problems. We further present an analysis of the recent trends in DBT techniques and review the different application domains to which the techniques have been applied, giving an overview of the tools developed by researchers to do so. Finally, the paper identifies some DBT challenges that are potential topics for future work.

相關內容

Deception, which includes leading cyber-attackers astray with false information, has shown to be an effective method of thwarting cyber-attacks. There has been little investigation of the effect of probing action costs on adversarial decision-making, despite earlier studies on deception in cybersecurity focusing primarily on variables like network size and the percentage of honeypots utilized in games. Understanding human decision-making when prompted with choices of various costs is essential in many areas such as in cyber security. In this paper, we will use a deception game (DG) to examine different costs of probing on adversarial decisions. To achieve this we utilized an IBLT model and a delayed feedback mechanism to mimic knowledge of human actions. Our results were taken from an even split of deception and no deception to compare each influence. It was concluded that probing was slightly taken less as the cost of probing increased. The proportion of attacks stayed relatively the same as the cost of probing increased. Although a constant cost led to a slight decrease in attacks. Overall, our results concluded that the different probing costs do not have an impact on the proportion of attacks whereas it had a slightly noticeable impact on the proportion of probing.

The ability to derive useful information by asking clarifying questions (ACQ) is an important element of real life collaboration on reasoning tasks, such as question answering (QA). Existing natural language ACQ challenges, however, evaluate generations based on word overlap rather than the value of the information itself. Word overlap is often an inappropriate metric for question generation since many different questions could be useful in a given situation, and a single question can be phrased many different ways. Instead, we propose evaluating questions pragmatically based on the value of the information they retrieve. Here we present a definition and framework for natural language pragmatic asking of clarifying questions (PACQ), the problem of generating questions that result in answers useful for a reasoning task. We also present fact-level masking (FLM), a procedure for converting natural language datasets into self-supervised PACQ datasets by omitting particular critical facts. Finally, we generate a PACQ dataset from the HotpotQA dataset using FLM and evaluate several zero-shot language models on it. Our experiments show that current zero-shot models struggle to ask questions that retrieve useful information, as compared to human annotators. These results demonstrate an opportunity to use FLM datasets and the PACQ framework to objectively evaluate and improve question generation and other language models.

Deep learning based automatic modulation classification (AMC) has received significant attention owing to its potential applications in both military and civilian use cases. Recently, data-driven subsampling techniques have been utilized to overcome the challenges associated with computational complexity and training time for AMC. Beyond these direct advantages of data-driven subsampling, these methods also have regularizing properties that may improve the adversarial robustness of the modulation classifier. In this paper, we investigate the effects of an adversarial attack on an AMC system that employs deep learning models both for AMC and for subsampling. Our analysis shows that subsampling itself is an effective deterrent to adversarial attacks. We also uncover the most efficient subsampling strategy when an adversarial attack on both the classifier and the subsampler is anticipated.

Building simulation environments for developing and testing autonomous vehicles necessitates that the simulators accurately model the statistical realism of the real-world environment, including the interaction with other vehicles driven by human drivers. To address this requirement, an accurate human behavior model is essential to incorporate the diversity and consistency of human driving behavior. We propose a mathematical framework for designing a data-driven simulation model that simulates human driving behavior more realistically than the currently used physics-based simulation models. Experiments conducted using the NGSIM dataset validate our hypothesis regarding the necessity of considering the complexity, diversity, and consistency of human driving behavior when aiming to develop realistic simulators.

Modern consumer electronic devices have started executing deep learning-based intelligence services on devices, not cloud servers, to keep personal data on devices and to reduce network and cloud costs. We find such a trend as the opportunity to personalize intelligence services by updating neural networks with user data without exposing the data out of devices: on-device training. However, the limited resources of devices incurs significant difficulties. We propose a light-weight on-device training framework, NNTrainer, which provides highly memory-efficient neural network training techniques and proactive swapping based on fine-grained execution order analysis for neural networks. Moreover, its optimizations do not sacrifice accuracy and are transparent to training algorithms; thus, prior algorithmic studies may be implemented on top of NNTrainer. The evaluations show that NNTrainer can reduce memory consumption down to 1/20 (saving 95%!) and effectively personalizes intelligence services on devices. NNTrainer is cross-platform and practical open-source software, which is being deployed to millions of mobile devices.

Recently, significant attention has been drawn to the development of two antenna technologies known as "Fluid Antenna" and "Movable Antenna" in wireless communication research community, owing to their flexibility and reconfigurability for improving the wireless system performance in various applications. However, some confusions/concerns have also ensued on their nomenclature. In fact, both "Fluid Antenna" and "Movable Antenna" are not newly-made terms, while they have a longstanding presence in the field of antenna technology. This article thus aims to review the historical evolution of these technologies for fostering a clear understanding of their origins and recent development in the realm of wireless communication. It is hoped that this article will help dispel any confusion, concern or even dispute on the appropriate use of their names in the literature and motivate more research endeavors to focus on resolving their technical issues in the future.

Neural marked temporal point processes have been a valuable addition to the existing toolbox of statistical parametric models for continuous-time event data. These models are useful for sequences where each event is associated with a single item (a single type of event or a "mark") -- but such models are not suited for the practical situation where each event is associated with a set of items. In this work, we develop a general framework for modeling set-valued data in continuous-time, compatible with any intensity-based recurrent neural point process model. In addition, we develop inference methods that can use such models to answer probabilistic queries such as "the probability of item $A$ being observed before item $B$," conditioned on sequence history. Computing exact answers for such queries is generally intractable for neural models due to both the continuous-time nature of the problem setting and the combinatorially-large space of potential outcomes for each event. To address this, we develop a class of importance sampling methods for querying with set-based sequences and demonstrate orders-of-magnitude improvements in efficiency over direct sampling via systematic experiments with four real-world datasets. We also illustrate how to use this framework to perform model selection using likelihoods that do not involve one-step-ahead prediction.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司