亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this contribution we extend an ontology for modelling agents and their interactions, called Ontology for Agents, Systems, and Integration of Services (in short, OASIS), with conditionals and ontological smart contracts (in short, OSCs). OSCs are ontological representations of smart contracts that allow to establish responsibilities and authorizations among agents and set agreements, whereas conditionals allow one to restrict and limit agent interactions, define activation mechanisms that trigger agent actions, and define constraints and contract terms on OSCs. Conditionals and OSCs, as defined in OASIS, are applied to extend with ontological capabilities digital public ledgers such as the blockchain and smart contracts implemented on it. We will also sketch the architecture of a framework based on the OASIS definition of OSCs that exploits the Ethereum platform and the Interplanetary File System.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Dialogue-based relation extraction (DiaRE) aims to detect the structural information from unstructured utterances in dialogues. Existing relation extraction models may be unsatisfactory under such a conversational setting, due to the entangled logic and information sparsity issues in utterances involving multiple speakers. To this end, we introduce SOLS, a novel model which can explicitly induce speaker-oriented latent structures for better DiaRE. Specifically, we learn latent structures to capture the relationships among tokens beyond the utterance boundaries, alleviating the entangled logic issue. During the learning process, our speaker-specific regularization method progressively highlights speaker-related key clues and erases the irrelevant ones, alleviating the information sparsity issue. Experiments on three public datasets demonstrate the effectiveness of our proposed approach.

Cyber-physical systems (CPS) data privacy protection during sharing, aggregating, and publishing is a challenging problem. Several privacy protection mechanisms have been developed in the literature to protect sensitive data from adversarial analysis and eliminate the risk of re-identifying the original properties of shared data. However, most of the existing solutions have drawbacks, such as (i) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (ii) ignoring data providers privacy preference, (iii) using uniform privacy protection which may create inadequate privacy for some provider while overprotecting others, and (iv) lack of a comprehensive privacy quantification model assuring data privacy-preservation. To address these issues, we propose a personalized privacy preference framework by characterizing and quantifying the CPS vulnerabilities as well as ensuring privacy. First, we introduce a standard vulnerability profiling library (SVPL) by arranging the nodes of an energy-CPS from maximum to minimum vulnerable based on their privacy loss. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that our privacy characterization and quantification model can attain better privacy preservation by eliminating the trade-off between privacy, utility, and risk of losing information.

Some of today's greatest challenges in urban environments concern individual mobility and rapid parcel delivery. Given the surge of e-commerce and the ever-increasing volume of goods to be delivered, we explore possible logistic solutions by proposing algorithms to add parcel-transport services to ride-hailing systems. Toward this end, we present and solve mixed-integer linear programming (MILP) formulations of the share-a-ride problem and quantitatively analyze the service revenues and use of vehicle resources. We create five scenarios that represent joint transportation situations for parcels and people, and that consider different densities in request types and different requirements for vehicle resources. For one scenario, we propose an alternative MILP formulation that significantly reduces computation times. The proposed model also improves scalability by solving instances with 260% more requests than those solved with general MILP. The results show that the greatest profit margins occur when several parcels share trips with customers. In contrast, with all metrics considered, the worst results occur when parcels and people are transported in separate dedicated vehicles. The integration of parcel services in ride-hailing systems also reduces vehicle waiting times when the number of parcel requests exceeds the number of ride-hailing customers.

Unmanned aerial vehicles (UAVs) are gaining immense attention due to their potential to revolutionize various businesses and industries. However, the adoption of UAV-assisted applications will strongly rely on the provision of reliable systems that allow managing UAV operations at high levels of safety and security. Recently, the concept of UAV traffic management (UTM) has been introduced to support safe, efficient, and fair access to low-altitude airspace for commercial UAVs. A UTM system identifies multiple cooperating parties with different roles and levels of authority to provide real-time services to airspace users. However, current UTM systems are centralized and lack a clear definition of protocols that govern a secure interaction between authorities, service providers, and end-users. The lack of such protocols renders the UTM system unscalable and prone to various cyber attacks. Another limitation of the currently proposed UTM architecture is the absence of an efficient mechanism to enforce airspace rules and regulations. To address this issue, we propose a decentralized UTM protocol that controls access to airspace while ensuring high levels of integrity, availability, and confidentiality of airspace operations. To achieve this, we exploit key features of the blockchain and smart contract technologies. In addition, we employ a mobile crowdsensing (MCS) mechanism to seamlessly enforce airspace rules and regulations that govern the UAV operations. The solution is implemented on top of the Etheruem platform and verified using four different smart contract verification tools. We also provided a security and cost analysis of our solution. For reproducibility, we made our implementation publicly available on Github.

Federated learning (FL) enables multiple clients to jointly train a global model under the coordination of a central server. Although FL is a privacy-aware paradigm, where raw data sharing is not required, recent studies have shown that FL might leak the private data of a client through the model parameters shared with the server or the other clients. In this paper, we present the HyFed framework, which enhances the privacy of FL while preserving the utility of the global model. HyFed provides developers with a generic API to develop federated, privacy-preserving algorithms. HyFed supports both simulation and federated operation modes and its source code is publicly available at //github.com/tum-aimed/hyfed.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Video Question Answering (Video QA) requires fine-grained understanding of both video and language modalities to answer the given questions. In this paper, we propose novel training schemes for multiple-choice video question answering with a self-supervised pre-training stage and a supervised contrastive learning in the main stage as an auxiliary learning. In the self-supervised pre-training stage, we transform the original problem format of predicting the correct answer into the one that predicts the relevant question to provide a model with broader contextual inputs without any further dataset or annotation. For contrastive learning in the main stage, we add a masking noise to the input corresponding to the ground-truth answer, and consider the original input of the ground-truth answer as a positive sample, while treating the rest as negative samples. By mapping the positive sample closer to the masked input, we show that the model performance is improved. We further employ locally aligned attention to focus more effectively on the video frames that are particularly relevant to the given corresponding subtitle sentences. We evaluate our proposed model on highly competitive benchmark datasets related to multiple-choice video QA: TVQA, TVQA+, and DramaQA. Experimental results show that our model achieves state-of-the-art performance on all datasets. We also validate our approaches through further analyses.

In recent years with the rise of Cloud Computing (CC), many companies providing services in the cloud, are empowered a new series of services to their catalog, such as data mining (DM) and data processing, taking advantage of the vast computing resources available to them. Different service definition proposals have been proposed to address the problem of describing services in CC in a comprehensive way. Bearing in mind that each provider has its own definition of the logic of its services, and specifically of DM services, it should be pointed out that the possibility of describing services in a flexible way between providers is fundamental in order to maintain the usability and portability of this type of CC services. The use of semantic technologies based on the proposal offered by Linked Data (LD) for the definition of services, allows the design and modelling of DM services, achieving a high degree of interoperability. In this article a schema for the definition of DM services on CC is presented, in addition are considered all key aspects of service in CC, such as prices, interfaces, Software Level Agreement, instances or workflow of experimentation, among others. The proposal presented is based on LD, so that it reuses other schemata obtaining a best definition of the service. For the validation of the schema, a series of DM services have been created where some of the best known algorithms such as \textit{Random Forest} or \textit{KMeans} are modeled as services.

Machine Learning models become increasingly proficient in complex tasks. However, even for experts in the field, it can be difficult to understand what the model learned. This hampers trust and acceptance, and it obstructs the possibility to correct the model. There is therefore a need for transparency of machine learning models. The development of transparent classification models has received much attention, but there are few developments for achieving transparent Reinforcement Learning (RL) models. In this study we propose a method that enables a RL agent to explain its behavior in terms of the expected consequences of state transitions and outcomes. First, we define a translation of states and actions to a description that is easier to understand for human users. Second, we developed a procedure that enables the agent to obtain the consequences of a single action, as well as its entire policy. The method calculates contrasts between the consequences of a policy derived from a user query, and of the learned policy of the agent. Third, a format for generating explanations was constructed. A pilot survey study was conducted to explore preferences of users for different explanation properties. Results indicate that human users tend to favor explanations about policy rather than about single actions.

Autonomous urban driving navigation with complex multi-agent dynamics is under-explored due to the difficulty of learning an optimal driving policy. The traditional modular pipeline heavily relies on hand-designed rules and the pre-processing perception system while the supervised learning-based models are limited by the accessibility of extensive human experience. We present a general and principled Controllable Imitative Reinforcement Learning (CIRL) approach which successfully makes the driving agent achieve higher success rates based on only vision inputs in a high-fidelity car simulator. To alleviate the low exploration efficiency for large continuous action space that often prohibits the use of classical RL on challenging real tasks, our CIRL explores over a reasonably constrained action space guided by encoded experiences that imitate human demonstrations, building upon Deep Deterministic Policy Gradient (DDPG). Moreover, we propose to specialize adaptive policies and steering-angle reward designs for different control signals (i.e. follow, straight, turn right, turn left) based on the shared representations to improve the model capability in tackling with diverse cases. Extensive experiments on CARLA driving benchmark demonstrate that CIRL substantially outperforms all previous methods in terms of the percentage of successfully completed episodes on a variety of goal-directed driving tasks. We also show its superior generalization capability in unseen environments. To our knowledge, this is the first successful case of the learned driving policy through reinforcement learning in the high-fidelity simulator, which performs better-than supervised imitation learning.

北京阿比特科技有限公司