亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conventional modelling of networks evolving in time focuses on capturing variations in the network structure. However, the network might be static from the origin or experience only deterministic, regulated changes in its structure, providing either a physical infrastructure or a specified connection arrangement for some other processes. Thus, to detect change in its exploitation, we need to focus on the processes happening on the network. In this work, we present the concept of monitoring random Temporal Edge Network (TEN) processes that take place on the edges of a graph having a fixed structure. Our framework is based on the Generalized Network Autoregressive statistical models with time-dependent exogenous variables (GNARX models) and Cumulative Sum (CUSUM) control charts. To demonstrate its effective detection of various types of change, we conduct a simulation study and monitor the real-world data of cross-border physical electricity flows in Europe.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We present an information-theoretic lower bound for the problem of parameter estimation with time-uniform coverage guarantees. Via a new a reduction to sequential testing, we obtain stronger lower bounds that capture the hardness of the time-uniform setting. In the case of location model estimation, logistic regression, and exponential family models, our $\Omega(\sqrt{n^{-1}\log \log n})$ lower bound is sharp to within constant factors in typical settings.

Autoencoders (AE) are simple yet powerful class of neural networks that compress data by projecting input into low-dimensional latent space (LS). Whereas LS is formed according to the loss function minimization during training, its properties and topology are not controlled directly. In this paper we focus on AE LS properties and propose two methods for obtaining LS with desired topology, called LS configuration. The proposed methods include loss configuration using a geometric loss term that acts directly in LS, and encoder configuration. We show that the former allows to reliably obtain LS with desired configuration by defining the positions and shapes of LS clusters for supervised AE (SAE). Knowing LS configuration allows to define similarity measure in LS to predict labels or estimate similarity for multiple inputs without using decoders or classifiers. We also show that this leads to more stable and interpretable training. We show that SAE trained for clothes texture classification using the proposed method generalizes well to unseen data from LIP, Market1501, and WildTrack datasets without fine-tuning, and even allows to evaluate similarity for unseen classes. We further illustrate the advantages of pre-configured LS similarity estimation with cross-dataset searches and text-based search using a text query without language models.

Modeling multi-agent systems on networks is a fundamental challenge in a wide variety of disciplines. We jointly infer the weight matrix of the network and the interaction kernel, which determine respectively which agents interact with which others and the rules of such interactions from data consisting of multiple trajectories. The estimator we propose leads naturally to a non-convex optimization problem, and we investigate two approaches for its solution: one is based on the alternating least squares (ALS) algorithm; another is based on a new algorithm named operator regression with alternating least squares (ORALS). Both algorithms are scalable to large ensembles of data trajectories. We establish coercivity conditions guaranteeing identifiability and well-posedness. The ALS algorithm appears statistically efficient and robust even in the small data regime but lacks performance and convergence guarantees. The ORALS estimator is consistent and asymptotically normal under a coercivity condition. We conduct several numerical experiments ranging from Kuramoto particle systems on networks to opinion dynamics in leader-follower models.

The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.

This article is devoted to the shape optimization of the internal structure of an electric motor, and more precisely of the arrangement of air and ferromagnetic material inside the rotor part with the aim to increase the torque of the machine. The governing physical problem is the time-dependent, non linear magneto-quasi-static version of Maxwell's equations. This multiphase problem can be reformulated on a 2d section of the real cylindrical 3d configuration; however, due to the rotation of the machine, the geometry of the various material phases at play (the ferromagnetic material, the permanent magnets, air, etc.) undergoes a prescribed motion over the considered time period. This original setting raises a number of issues. From the theoretical viewpoint, we prove the well-posedness of this unusual non linear evolution problem featuring a moving geometry. We then calculate the shape derivative of a performance criterion depending on the shape of the ferromagnetic phase via the corresponding magneto-quasi-static potential. Our numerical framework to address this problem is based on a shape gradient algorithm. The non linear time periodic evolution problems for the magneto-quasi-static potential is solved in the time domain, with a Newton-Raphson method. The discretization features a space-time finite element method, applied on a precise, meshed representation of the space-time region of interest, which encloses a body-fitted representation of the various material phases of the motor at all the considered stages of the time period. After appraising the efficiency of our numerical framework on an academic problem, we present a quite realistic example of optimal design of the ferromagnetic phase of the rotor of an electric machine.

In the present work, the applicability of physics-augmented neural network (PANN) constitutive models for complex electro-elastic finite element analysis is demonstrated. For the investigations, PANN models for electro-elastic material behavior at finite deformations are calibrated to different synthetically generated datasets, including an analytical isotropic potential, a homogenised rank-one laminate, and a homogenised metamaterial with a spherical inclusion. Subsequently, boundary value problems inspired by engineering applications of composite electro-elastic materials are considered. Scenarios with large electrically induced deformations and instabilities are particularly challenging and thus necessitate extensive investigations of the PANN constitutive models in the context of finite element analyses. First of all, an excellent prediction quality of the model is required for very general load cases occurring in the simulation. Furthermore, simulation of large deformations and instabilities poses challenges on the stability of the numerical solver, which is closely related to the constitutive model. In all cases studied, the PANN models yield excellent prediction qualities and a stable numerical behavior even in highly nonlinear scenarios. This can be traced back to the PANN models excellent performance in learning both the first and second derivatives of the ground truth electro-elastic potentials, even though it is only calibrated on the first derivatives. Overall, this work demonstrates the applicability of PANN constitutive models for the efficient and robust simulation of engineering applications of composite electro-elastic materials.

The characterization of complex networks with tools originating in geometry, for instance through the statistics of so-called Ricci curvatures, is a well established tool of network science. There exist various types of such Ricci curvatures, capturing different aspects of network geometry. In the present work, we investigate Bakry-\'Emery-Ricci curvature, a notion of discrete Ricci curvature that has been studied much in geometry, but so far has not been applied to networks. We explore on standard classes of artificial networks as well as on selected empirical ones to what the statistics of that curvature are similar to or different from that of other curvatures, how it is correlated to other important network measures, and what it tells us about the underlying network. We observe that most vertices typically have negative curvature. Random and small-world networks exhibit a narrow curvature distribution whereas other classes and most of the real-world networks possess a wide curvature distribution. When we compare Bakry-\'Emery-Ricci curvature with two other discrete notions of Ricci-curvature, Forman-Ricci and Ollivier-Ricci curvature for both model and real-world networks, we observe a high positive correlation between Bakry-\'Emery-Ricci and both Forman-Ricci and Ollivier-Ricci curvature, and in particular with the augmented version of Forman-Ricci curvature. Bakry-\'Emery-Ricci curvature also exhibits a high negative correlation with the vertex centrality measure and degree for most of the model and real-world networks. However, it does not correlate with the clustering coefficient. Also, we investigate the importance of vertices with highly negative curvature values to maintain communication in the network. The computational time for Bakry-\'Emery-Ricci curvature is shorter than that required for Ollivier-Ricci curvature but higher than for Augmented Forman-Ricci curvature.

Boolean automata networks (aka Boolean networks) are space-time discrete dynamical systems, studied as a model of computation and as a representative model of natural phenomena. A collection of simple entities (the automata) update their 0-1 states according to local rules. The dynamics of the network is highly sensitive to update modes, i.e., to the schedule according to which the automata apply their local rule. A new family of update modes appeared recently, called block-parallel, which is dual to the well studied block-sequential. Although basic, it embeds the rich feature of update repetitions among a temporal updating period, allowing for atypical asymptotic behaviors. In this paper, we prove that it is able to breed complex computations, squashing almost all decision problems on the dynamics to the traditionally highest (for reachability questions) class PSPACE. Despite obtaining these complexity bounds for a broad set of local and global properties, we also highlight a surprising gap: bijectivity is still coNP.

Physics-informed neural networks (PINNs) are neural networks (NNs) that directly encode model equations, like Partial Differential Equations (PDEs), in the network itself. While most of the PINN algorithms in the literature minimize the local residual of the governing equations, there are energy-based approaches that take a different path by minimizing the variational energy of the model. We show that in the case of the steady thermal equation weakly coupled to magnetic equation, the energy-based approach displays multiple advantages compared to the standard residual-based PINN: it is more computationally efficient, it requires a lower order of derivatives to compute, and it involves less hyperparameters. The analyzed benchmark problem is the optimal design of an inductor for the controlled heating of a graphite plate. The optimized device is designed involving a multi-physics problem: a time-harmonic magnetic problem and a steady thermal problem. For the former, a deep neural network solving the direct problem is supervisedly trained on Finite Element Analysis (FEA) data. In turn, the solution of the latter relies on a hypernetwork that takes as input the inductor geometry parameters and outputs the model weights of an energy-based PINN (or ePINN). Eventually, the ePINN predicts the temperature field within the graphite plate.

An architectural framework, based on collaborative filtering using K-nearest neighbor and cosine similarity, was developed and implemented to fit the requirements for the company DecorRaid. The aim of the paper is to test different evaluation techniques within the environment to research the recommender systems performance. Three perspectives were found relevant for evaluating a recommender system in the specific environment, namely dataset, system and user perspective. With these perspectives it was possible to gain a broader view of the recommender systems performance. Online A/B split testing was conducted to compare the performance of small adjustments to the RS and to test the relevance of the evaluation techniques. Key factors are solving the sparsity and cold start problem, where the suggestion is to research a hybrid RS combining Content-based and CF based techniques.

北京阿比特科技有限公司