Latent Gaussian models and boosting are widely used techniques in statistics and machine learning. Tree-boosting shows excellent prediction accuracy on many data sets, but potential drawbacks are that it assumes conditional independence of samples, produces discontinuous predictions for, e.g., spatial data, and it can have difficulty with high-cardinality categorical variables. Latent Gaussian models, such as Gaussian process and grouped random effects models, are flexible prior models which explicitly model dependence among samples and which allow for efficient learning of predictor functions and for making probabilistic predictions. However, existing latent Gaussian models usually assume either a zero or a linear prior mean function which can be an unrealistic assumption. This article introduces a novel approach that combines boosting and latent Gaussian models to remedy the above-mentioned drawbacks and to leverage the advantages of both techniques. We obtain increased prediction accuracy compared to existing approaches in both simulated and real-world data experiments.
Multiple hypothesis testing has been widely applied to problems dealing with high-dimensional data, e.g., selecting significant variables and controlling the selection error rate. The most prevailing measure of error rate used in the multiple hypothesis testing is the false discovery rate (FDR). In recent years, local false discovery rate (fdr) has drawn much attention, due to its advantage of accessing the confidence of individual hypothesis. However, most methods estimate fdr through p-values or statistics with known null distributions, which are sometimes not available or reliable. Adopting the innovative methodology of competition-based procedures, e.g., knockoff filter, this paper proposes a new approach, named TDfdr, to local false discovery rate estimation, which is free of the p-values or known null distributions. Simulation results demonstrate that TDfdr can accurately estimate the fdr with two competition-based procedures. In real data analysis, the power of TDfdr on variable selection is verified on two biological datasets.
Higher-order tensor data are prevailing in a wide range of fields including high-resolution videos, multimodality imaging such as MRI and fMRI scans, commercial networks, engineering such as signal processing, and elsewhere. Tucker decomposition may be the most general low-rank approximation method among versatile decompositions of higher-order tensors owning to its strong compression ability, whilst statistical properties of the induced Tucker tensor factor model (TuTFaM) remains a big challenge and yet critical before it provides justification for applications in machine learning and beyond. Existing theoretical developments mainly focus on the field of time series with the assumption of strong auto-correlation among temporally ordered observations, which is ineffective for independent and weakly dependent tensor observations. Under quite mild assumptions, this article kicks off matricization of raw weakly correlated tensor observations within the TuTFaM setting, and proposes two sets of PCA based estimation procedures, moPCA and its refinement IPmoPCA, the latter of which is enhanced in rate of convergence. We develop their asymptotic behaviors, including mainly convergence rates and asymptotic distributions of estimators of loading matrices, latent tensor factors and signal parts. The theoretical results can reduce to those in low-order tensor factor models in existing literature. The proposed approaches outperform existing auto-covariance based methods for tensor time series in terms of effects of estimation and tensor reconstruction, in both simulation experiments and two real data examples.
The ability to accurately predict human behavior is central to the safety and efficiency of robot autonomy in interactive settings. Unfortunately, robots often lack access to key information on which these predictions may hinge, such as people's goals, attention, and willingness to cooperate. Dual control theory addresses this challenge by treating unknown parameters of a predictive model as stochastic hidden states and inferring their values at runtime using information gathered during system operation. While able to optimally and automatically trade off exploration and exploitation, dual control is computationally intractable for general interactive motion planning, mainly due to the fundamental coupling between robot trajectory optimization and human intent inference. In this paper, we present a novel algorithmic approach to enable active uncertainty reduction for interactive motion planning based on the implicit dual control paradigm. Our approach relies on sampling-based approximation of stochastic dynamic programming, leading to a model predictive control problem that can be readily solved by real-time gradient-based optimization methods. The resulting policy is shown to preserve the dual control effect for a broad class of predictive human models with both continuous and categorical uncertainty. The efficacy of our approach is demonstrated with simulated driving examples.
From a model-building perspective, in this paper we propose a paradigm shift for fitting over-parameterized models. Philosophically, the mindset is to fit models to future observations rather than to the observed sample. Technically, choosing an imputation model for generating future observations, we fit over-parameterized models to future observations via optimizing an approximation to the desired expected loss-function based on its sample counterpart and an adaptive simplicity-preference function. This technique is discussed in detail to both creating bootstrap imputation and final estimation with bootstrap imputation. The method is illustrated with the many-normal-means problem, $n < p$ linear regression, and deep convolutional neural networks for image classification of MNIST digits. The numerical results demonstrate superior performance across these three different types of applications. For example, for the many-normal-means problem, our method uniformly dominates James-Stein and Efron's $g-$modeling, and for the MNIST image classification, it performs better than all existing methods and reaches arguably the best possible result. While this paper is largely expository because of the ambitious task of taking a look at over-parameterized models from the new perspective, fundamental theoretical properties are also investigated. We conclude the paper with a few remarks.
College counseling centers in various universities have been tasked with the important responsibility of attending to the mental health needs of their students. Owing to the unprecedented recent surge of demand for such services, college counseling centers are facing several crippling resource-level challenges. This is leading to longer wait times which limits access to critical mental health services. To address these challenges, we construct a discrete-event simulation model that captures several intricate details of their operations and provides a data-driven framework to quantify the effect of different policy changes. In contrast to existing work on this matter, which are primarily based on qualitative assessments, the considered quantitative approach has the potential to lead to key observations that can assist counseling directors in constructing a system with desirable performance. To demonstrate the benefit of the considered simulation model, we use data specific to Texas A&M's Counseling & Psychological Services to run a series of numerical experiments. Our results demonstrate the predictive power of the simulation model, highlight a number of key observations, and identify policy changes that result in desirable system performance.
In many life science experiments or medical studies, subjects are repeatedly observed and measurements are collected in factorial designs with multivariate data. The analysis of such multivariate data is typically based on multivariate analysis of variance (MANOVA) or mixed models, requiring complete data, and certain assumption on the underlying parametric distribution such as continuity or a specific covariance structure, e.g., compound symmetry. However, these methods are usually not applicable when discrete data or even ordered categorical data are present. In such cases, nonparametric rank-based methods that do not require stringent distributional assumptions are the preferred choice. However, in the multivariate case, most rank-based approaches have only been developed for complete observations. It is the aim of this work is to develop asymptotic correct procedures that are capable of handling missing values, allowing for singular covariance matrices and are applicable for ordinal or ordered categorical data. This is achieved by applying a wild bootstrap procedure in combination with quadratic form-type test statistics. Beyond proving their asymptotic correctness, extensive simulation studies validate their applicability for small samples. Finally, two real data examples are analyzed.
Bonnet et al. (FOCS 2020) introduced the graph invariant twin-width and showed that many NP-hard problems are tractable for graphs of bounded twin-width, generalizing similar results for other width measures, including treewidth and clique-width. In this paper, we investigate the use of twin-width for solving the propositional satisfiability problem (SAT) and propositional model counting. We particularly focus on Bounded-ones Weighted Model Counting (BWMC), which takes as input a CNF formula $F$ along with a bound $k$ and asks for the weighted sum of all models with at most $k$ positive literals. BWMC generalizes not only SAT but also (weighted) model counting. We develop the notion of "signed" twin-width of CNF formulas and establish that BWMC is fixed-parameter tractable when parameterized by the certified signed twin-width of $F$ plus $k$. We show that this result is tight: it is neither possible to drop the bound $k$ nor use the vanilla twin-width instead if one wishes to retain fixed-parameter tractability, even for the easier problem SAT. Our theoretical results are complemented with an empirical evaluation and comparison of signed twin-width on various classes of CNF formulas.
Data augmentation is a crucial component in unsupervised contrastive learning (CL). It determines how positive samples are defined and, ultimately, the quality of the representation. While efficient augmentations have been found for standard vision datasets, such as ImageNet, it is still an open problem in other applications, such as medical imaging, or in datasets with easy-to-learn but irrelevant imaging features. In this work, we propose a new way to define positive samples using kernel theory along with a novel loss called decoupled uniformity. We propose to integrate prior information, learnt from generative models or given as auxiliary attributes, into contrastive learning, to make it less dependent on data augmentation. We draw a connection between contrastive learning and the conditional mean embedding theory to derive tight bounds on the downstream classification loss. In an unsupervised setting, we empirically demonstrate that CL benefits from generative models, such as VAE and GAN, to less rely on data augmentations. We validate our framework on vision datasets including CIFAR10, CIFAR100, STL10 and ImageNet100 and a brain MRI dataset. In the weakly supervised setting, we demonstrate that our formulation provides state-of-the-art results.
We propose a new method for unsupervised generative continual learning through realignment of Variational Autoencoder's latent space. Deep generative models suffer from catastrophic forgetting in the same way as other neural structures. Recent generative continual learning works approach this problem and try to learn from new data without forgetting previous knowledge. However, those methods usually focus on artificial scenarios where examples share almost no similarity between subsequent portions of data - an assumption not realistic in the real-life applications of continual learning. In this work, we identify this limitation and posit the goal of generative continual learning as a knowledge accumulation task. We solve it by continuously aligning latent representations of new data that we call bands in additional latent space where examples are encoded independently of their source task. In addition, we introduce a method for controlled forgetting of past data that simplifies this process. On top of the standard continual learning benchmarks, we propose a novel challenging knowledge consolidation scenario and show that the proposed approach outperforms state-of-the-art by up to twofold across all experiments and the additional real-life evaluation. To our knowledge, Multiband VAE is the first method to show forward and backward knowledge transfer in generative continual learning.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.