Image virtual try-on replaces the clothes on a person image with a desired in-shop clothes image. It is challenging because the person and the in-shop clothes are unpaired. Existing methods formulate virtual try-on as either in-painting or cycle consistency. Both of these two formulations encourage the generation networks to reconstruct the input image in a self-supervised manner. However, existing methods do not differentiate clothing and non-clothing regions. A straight-forward generation impedes virtual try-on quality because of the heavily coupled image contents. In this paper, we propose a Disentangled Cycle-consistency Try-On Network (DCTON). The DCTON is able to produce highly-realistic try-on images by disentangling important components of virtual try-on including clothes warping, skin synthesis, and image composition. To this end, DCTON can be naturally trained in a self-supervised manner following cycle consistency learning. Extensive experiments on challenging benchmarks show that DCTON outperforms state-of-the-art approaches favorably.
We introduce a weakly supervised method for representation learning based on aligning temporal sequences (e.g., videos) of the same process (e.g., human action). The main idea is to use the global temporal ordering of latent correspondences across sequence pairs as a supervisory signal. In particular, we propose a loss based on scoring the optimal sequence alignment to train an embedding network. Our loss is based on a novel probabilistic path finding view of dynamic time warping (DTW) that contains the following three key features: (i) the local path routing decisions are contrastive and differentiable, (ii) pairwise distances are cast as probabilities that are contrastive as well, and (iii) our formulation naturally admits a global cycle consistency loss that verifies correspondences. For evaluation, we consider the tasks of fine-grained action classification, few shot learning, and video synchronization. We report significant performance increases over previous methods. In addition, we report two applications of our temporal alignment framework, namely 3D pose reconstruction and fine-grained audio/visual retrieval.
This paper considers constrained online dispatching with unknown arrival, reward and constraint distributions. We propose a novel online dispatching algorithm, named POND, standing for Pessimistic-Optimistic oNline Dispatching, which achieves $O(\sqrt{T})$ regret and $O(1)$ constraint violation. Both bounds are sharp. Our experiments on synthetic and real datasets show that POND achieves low regret with minimal constraint violations.
One of the successful approaches in semi-supervised learning is based on the consistency regularization. Typically, a student model is trained to be consistent with teacher prediction for the inputs under different perturbations. To be successful, the prediction targets given by teacher should have good quality, otherwise the student can be misled by teacher. Unfortunately, existing methods do not assess the quality of the teacher targets. In this paper, we propose a novel Certainty-driven Consistency Loss (CCL) that exploits the predictive uncertainty in the consistency loss to let the student dynamically learn from reliable targets. Specifically, we propose two approaches, i.e. Filtering CCL and Temperature CCL to either filter out uncertain predictions or pay less attention on them in the consistency regularization. We further introduce a novel decoupled framework to encourage model difference. Experimental results on SVHN, CIFAR-10, and CIFAR-100 demonstrate the advantages of our method over a few existing methods.
Lip sync has emerged as a promising technique for generating mouth movements from audio signals. However, synthesizing a high-resolution and photorealistic virtual news anchor is still challenging. Lack of natural appearance, visual consistency, and processing efficiency are the main problems with existing methods. This paper presents a novel lip-sync framework specially designed for producing high-fidelity virtual news anchors. A pair of Temporal Convolutional Networks are used to learn the cross-modal sequential mapping from audio signals to mouth movements, followed by a neural rendering network that translates the synthetic facial map into a high-resolution and photorealistic appearance. This fully trainable framework provides end-to-end processing that outperforms traditional graphics-based methods in many low-delay applications. Experiments also show the framework has advantages over modern neural-based methods in both visual appearance and efficiency.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC
Applying image processing algorithms independently to each frame of a video often leads to undesired inconsistent results over time. Developing temporally consistent video-based extensions, however, requires domain knowledge for individual tasks and is unable to generalize to other applications. In this paper, we present an efficient end-to-end approach based on deep recurrent network for enforcing temporal consistency in a video. Our method takes the original unprocessed and per-frame processed videos as inputs to produce a temporally consistent video. Consequently, our approach is agnostic to specific image processing algorithms applied on the original video. We train the proposed network by minimizing both short-term and long-term temporal losses as well as the perceptual loss to strike a balance between temporal stability and perceptual similarity with the processed frames. At test time, our model does not require computing optical flow and thus achieves real-time speed even for high-resolution videos. We show that our single model can handle multiple and unseen tasks, including but not limited to artistic style transfer, enhancement, colorization, image-to-image translation and intrinsic image decomposition. Extensive objective evaluation and subject study demonstrate that the proposed approach performs favorably against the state-of-the-art methods on various types of videos.
Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.
The task of face attribute manipulation has found increasing applications, but still remains challeng- ing with the requirement of editing the attributes of a face image while preserving its unique details. In this paper, we choose to combine the Variational AutoEncoder (VAE) and Generative Adversarial Network (GAN) for photorealistic image genera- tion. We propose an effective method to modify a modest amount of pixels in the feature maps of an encoder, changing the attribute strength contin- uously without hindering global information. Our training objectives of VAE and GAN are reinforced by the supervision of face recognition loss and cy- cle consistency loss for faithful preservation of face details. Moreover, we generate facial masks to en- force background consistency, which allows our training to focus on manipulating the foreground face rather than background. Experimental results demonstrate our method, called Mask-Adversarial AutoEncoder (M-AAE), can generate high-quality images with changing attributes and outperforms prior methods in detail preservation.
Generating novel, yet realistic, images of persons is a challenging task due to the complex interplay between the different image factors, such as the foreground, background and pose information. In this work, we aim at generating such images based on a novel, two-stage reconstruction pipeline that learns a disentangled representation of the aforementioned image factors and generates novel person images at the same time. First, a multi-branched reconstruction network is proposed to disentangle and encode the three factors into embedding features, which are then combined to re-compose the input image itself. Second, three corresponding mapping functions are learned in an adversarial manner in order to map Gaussian noise to the learned embedding feature space, for each factor respectively. Using the proposed framework, we can manipulate the foreground, background and pose of the input image, and also sample new embedding features to generate such targeted manipulations, that provide more control over the generation process. Experiments on Market-1501 and Deepfashion datasets show that our model does not only generate realistic person images with new foregrounds, backgrounds and poses, but also manipulates the generated factors and interpolates the in-between states. Another set of experiments on Market-1501 shows that our model can also be beneficial for the person re-identification task.