亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a multifidelity estimator of covariance matrices formulated as the solution to a regression problem on the manifold of symmetric positive definite matrices. The estimator is positive definite by construction, and the Mahalanobis distance minimized to obtain it possesses properties which enable practical computation. We show that our manifold regression multifidelity (MRMF) covariance estimator is a maximum likelihood estimator under a certain error model on manifold tangent space. More broadly, we show that our Riemannian regression framework encompasses existing multifidelity covariance estimators constructed from control variates. We demonstrate via numerical examples that our estimator can provide significant decreases, up to one order of magnitude, in squared estimation error relative to both single-fidelity and other multifidelity covariance estimators. Furthermore, preservation of positive definiteness ensures that our estimator is compatible with downstream tasks, such as data assimilation and metric learning, in which this property is essential.

相關內容

Despite the promising progress in multi-modal tasks, current large multi-modal models (LMM) are prone to hallucinating inconsistent descriptions with respect to the associated image and human instructions. This paper addresses this issue by introducing the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction. Our dataset consists of 120k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers. Unlike existing studies that primarily focus on positive instruction samples, we design LRV-Instruction to include both positive and negative instructions for more robust visual instruction tuning. Our negative instructions are designed at two semantic levels: (i) Nonexistent Element Manipulation and (ii) Existent Element Manipulation. To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a novel approach to evaluate visual instruction tuning without the need for human-annotated groundtruth answers and can adapt to diverse instruction formats. We conduct comprehensive experiments to investigate the hallucination of LMMs. Our results demonstrate that existing LMMs exhibit significant hallucination when presented with our negative instructions, particularly with Existent Element Manipulation instructions. Moreover, by finetuning MiniGPT4 on LRV-Instruction, we successfully mitigate hallucination while improving performance on public datasets using less training data compared to state-of-the-art methods. Additionally, we observed that a balanced ratio of positive and negative instances in the training data leads to a more robust model. Updates of our project are available at //fuxiaoliu.github.io/LRV/.

Distribution-dependent stochastic dynamical systems arise widely in engineering and science. We consider a class of such systems which model the limit behaviors of interacting particles moving in a vector field with random fluctuations. We aim to examine the most likely transition path between equilibrium stable states of the vector field. In the small noise regime, the action functional does not involve the solution of the skeleton equation which describes the unperturbed deterministic flow of the vector field shifted by the interaction at zero distance. As a result, we are led to study the most likely transition path for a stochastic differential equation without distribution dependency. This enables the computation of the most likely transition path for these distribution-dependent stochastic dynamical systems by the adaptive minimum action method and we illustrate our approach in two examples.

Traditional approaches for manipulation planning rely on an explicit geometric model of the environment to formulate a given task as an optimization problem. However, inferring an accurate model from raw sensor input is a hard problem in itself, in particular for articulated objects (e.g., closets, drawers). In this paper, we propose a Neural Field Representation (NFR) of articulated objects that enables manipulation planning directly from images. Specifically, after taking a few pictures of a new articulated object, we can forward simulate its possible movements, and, therefore, use this neural model directly for planning with trajectory optimization. Additionally, this representation can be used for shape reconstruction, semantic segmentation and image rendering, which provides a strong supervision signal during training and generalization. We show that our model, which was trained only on synthetic images, is able to extract a meaningful representation for unseen objects of the same class, both in simulation and with real images. Furthermore, we demonstrate that the representation enables robotic manipulation of an articulated object in the real world directly from images.

This paper investigates the performance of a singleuser fluid antenna system (FAS), by exploiting a class of elliptical copulas to describe the structure of dependency amongst the fluid antenna ports. By expressing Jakes' model in terms of the Gaussian copula, we consider two cases: (i) the general case, i.e., any arbitrary correlated fading distribution; and (ii) the specific case, i.e., correlated Nakagami-m fading. For both scenarios, we first derive analytical expressions for the cumulative distribution function (CDF) and probability density function (PDF) of the equivalent channel in terms of multivariate normal distribution. Then, we obtain the outage probability (OP) and the delay outage rate (DOR) to analyze the performance of the FAS. By employing the popular rank correlation coefficients such as Spearman's \{rho} and Kendall's {\tau}, we measure the degree of dependency in correlated arbitrary fading channels and illustrate how the Gaussian copula can be accurately connected to Jakes' model in FAS without complicated mathematical analysis. Numerical results show that increasing the fluid antenna size provides lower OP and DOR, but the system performance saturates as the number of antenna ports increases. In addition, our results indicate that FAS provides better performance compared to conventional single-fixed antenna systems even when the size of fluid antenna is small.

To plan the trajectories of a large and heterogeneous swarm, sequential or synchronous distributed methods usually become intractable, due to the lack of global connectivity and clock synchronization, Moreover, the existing asynchronously distributed schemes usually require recheck-like mechanisms instead of inherently considering the other' moving tendency. To this end, we propose a novel asynchronous protocol to allocate the agents' derivable space in a distributed way, by which each agent can replan trajectory depending on its own timetable. Properties such as collision avoidance and recursive feasibility are theoretically shown and a lower bound of protocol updating is provided. Comprehensive simulations and comparisons with five state-of-the-art methods validate the effectiveness of our method and illustrate the improvement in both the completion time and the moving distance. Finally, hardware experiments are carried out, where 8 heterogeneous unmanned ground vehicles with onboard computation navigate in cluttered scenarios at a high agility.

The assumption of no unmeasured confounders is a critical but unverifiable assumption required for causal inference yet quantitative sensitivity analyses to assess robustness of real-world evidence remains underutilized. The lack of use is likely in part due to complexity of implementation and often specific and restrictive data requirements required for application of each method. With the advent of sensitivity analyses methods that are broadly applicable in that they do not require identification of a specific unmeasured confounder, along with publicly available code for implementation, roadblocks toward broader use are decreasing. To spur greater application, here we present a best practice guidance to address the potential for unmeasured confounding at both the design and analysis stages, including a set of framing questions and an analytic toolbox for researchers. The questions at the design stage guide the research through steps evaluating the potential robustness of the design while encouraging gathering of additional data to reduce uncertainty due to potential confounding. At the analysis stage, the questions guide researchers to quantifying the robustness of the observed result and providing researchers with a clearer indication of the robustness of their conclusions. We demonstrate the application of the guidance using simulated data based on a real-world fibromyalgia study, applying multiple methods from our analytic toolbox for illustration purposes.

Recent work in algorithmic fairness has highlighted the challenge of defining racial categories for the purposes of anti-discrimination. These challenges are not new but have previously fallen to the state, which enacts race through government statistics, policies, and evidentiary standards in anti-discrimination law. Drawing on the history of state race-making, we examine how longstanding questions about the nature of race and discrimination appear within the algorithmic fairness literature. Through a content analysis of 60 papers published at FAccT between 2018 and 2020, we analyze how race is conceptualized and formalized in algorithmic fairness frameworks. We note that differing notions of race are adopted inconsistently, at times even within a single analysis. We also explore the institutional influences and values associated with these choices. While we find that categories used in algorithmic fairness work often echo legal frameworks, we demonstrate that values from academic computer science play an equally important role in the construction of racial categories. Finally, we examine the reasoning behind different operationalizations of race, finding that few papers explicitly describe their choices and even fewer justify them. We argue that the construction of racial categories is a value-laden process with significant social and political consequences for the project of algorithmic fairness. The widespread lack of justification around the operationalization of race reflects institutional norms that allow these political decisions to remain obscured within the backstage of knowledge production.

There has been a growing interest in parallel strategies for solving trajectory optimization problems. One key step in many algorithmic approaches to trajectory optimization is the solution of moderately-large and sparse linear systems. Iterative methods are particularly well-suited for parallel solves of such systems. However, fast and stable convergence of iterative methods is reliant on the application of a high-quality preconditioner that reduces the spread and increase the clustering of the eigenvalues of the target matrix. To improve the performance of these approaches, we present a new parallel-friendly symmetric stair preconditioner. We prove that our preconditioner has advantageous theoretical properties when used in conjunction with iterative methods for trajectory optimization such as a more clustered eigenvalue spectrum. Numerical experiments with typical trajectory optimization problems reveal that as compared to the best alternative parallel preconditioner from the literature, our symmetric stair preconditioner provides up to a 34% reduction in condition number and up to a 25% reduction in the number of resulting linear system solver iterations.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司