亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the performance of a singleuser fluid antenna system (FAS), by exploiting a class of elliptical copulas to describe the structure of dependency amongst the fluid antenna ports. By expressing Jakes' model in terms of the Gaussian copula, we consider two cases: (i) the general case, i.e., any arbitrary correlated fading distribution; and (ii) the specific case, i.e., correlated Nakagami-m fading. For both scenarios, we first derive analytical expressions for the cumulative distribution function (CDF) and probability density function (PDF) of the equivalent channel in terms of multivariate normal distribution. Then, we obtain the outage probability (OP) and the delay outage rate (DOR) to analyze the performance of the FAS. By employing the popular rank correlation coefficients such as Spearman's \{rho} and Kendall's {\tau}, we measure the degree of dependency in correlated arbitrary fading channels and illustrate how the Gaussian copula can be accurately connected to Jakes' model in FAS without complicated mathematical analysis. Numerical results show that increasing the fluid antenna size provides lower OP and DOR, but the system performance saturates as the number of antenna ports increases. In addition, our results indicate that FAS provides better performance compared to conventional single-fixed antenna systems even when the size of fluid antenna is small.

相關內容

This paper presents an algorithm for the preprocessing of observation data aimed at improving the robustness of orbit determination tools. Two objectives are fulfilled: obtain a refined solution to the initial orbit determination problem and detect possible outliers in the processed measurements. The uncertainty on the initial estimate is propagated forward in time and progressively reduced by exploiting sensor data available in said propagation window. Differential algebra techniques and a novel automatic domain splitting algorithm for second-order Taylor expansions are used to efficiently propagate uncertainties over time. A multifidelity approach is employed to minimize the computational effort while retaining the accuracy of the propagated estimate. At each observation epoch, a polynomial map is obtained by projecting the propagated states onto the observable space. Domains that do no overlap with the actual measurement are pruned thus reducing the uncertainty to be further propagated. Measurement outliers are also detected in this step. The refined estimate and retained observations are then used to improve the robustness of batch orbit determination tools. The effectiveness of the algorithm is demonstrated for a geostationary transfer orbit object using synthetic and real observation data from the TAROT network.

Convergence and compactness properties of approximate solutions to elliptic partial differential computed with the hybridized discontinuous Galerkin (HDG) are established. While it is known that solutions computed using the HDG scheme converge at optimal rates to smooth solutions, this does not establish the stability of the method or convergence to solutions with minimal regularity. The compactness and convergence results show that the HDG scheme can be utilized for the solution of nonlinear problems and linear problems with non-smooth coefficients on domains with reentrant corners.

Neural collapse provides an elegant mathematical characterization of learned last layer representations (a.k.a. features) and classifier weights in deep classification models. Such results not only provide insights but also motivate new techniques for improving practical deep models. However, most of the existing empirical and theoretical studies in neural collapse focus on the case that the number of classes is small relative to the dimension of the feature space. This paper extends neural collapse to cases where the number of classes are much larger than the dimension of feature space, which broadly occur for language models, retrieval systems, and face recognition applications. We show that the features and classifier exhibit a generalized neural collapse phenomenon, where the minimum one-vs-rest margins is maximized.We provide empirical study to verify the occurrence of generalized neural collapse in practical deep neural networks. Moreover, we provide theoretical study to show that the generalized neural collapse provably occurs under unconstrained feature model with spherical constraint, under certain technical conditions on feature dimension and number of classes.

Objective: Sleep spindles contain crucial brain dynamics information. We introduce the novel non-linear time-frequency analysis tool 'Concentration of Frequency and Time' (ConceFT) to create an interpretable automated algorithm for sleep spindle annotation in EEG data and to measure spindle instantaneous frequencies (IFs). Methods: ConceFT effectively reduces stochastic EEG influence, enhancing spindle visibility in the time-frequency representation. Our automated spindle detection algorithm, ConceFT-Spindle (ConceFT-S), is compared to A7 (non-deep learning) and SUMO (deep learning) using Dream and MASS benchmark databases. We also quantify spindle IF dynamics. Results: ConceFT-S achieves F1 scores of 0.749 in Dream and 0.786 in MASS, which is equivalent to or surpass A7 and SUMO with statistical significance. We reveal that spindle IF is generally nonlinear. Conclusion: ConceFT offers an accurate, interpretable EEG-based sleep spindle detection algorithm and enables spindle IF quantification.

This paper proposes a new methodology for deriving a point-based dimensionally homogeneous Jacobian, intended for performance evaluation and optimization of parallel manipulators with mixed degrees of freedom. Optimal manipulator often rely on performance indices obtained from the Jacobian matrix. However, when manipulators exhibit mixed translational and rotational freedoms, the conventional Jacobian's inconsistency of units lead to unbalanced optimal result. Addressing this issue, a point-based dimensionally homogeneous Jacobian has appeared as a prominent solution. However, existing point-based approaches for formulating dimensionally homogeneous Jacobian are applicable to a limited variety of parallel manipulators. Moreover, they are complicated and less intuitive. This paper introduces an extended selection matrix that combines component velocities from different points to describe the entire motion of moving plate. This proposed approach enables us to formulate an intuitive point-based, dimensionally homogeneous Jacobian, which can be applied to a wide variety of constrained parallel manipulators. To prove the validity of proposed method, a numerical example is provided utilizing a four-degree-of-freedom parallel manipulator.

This paper investigates robust beamforming for system-centric energy efficiency (EE) optimization in the vehicular integrated sensing and communication (ISAC) system, where the mobility of vehicles poses significant challenges to channel estimation. To obtain the optimal beamforming under channel uncertainty, we first formulate an optimization problem for maximizing the system EE under bounded channel estimation errors. Next, fractional programming and semidefinite relaxation (SDR) are utilized to relax the rank-1 constraints. We further use Schur complement and S-Procedure to transform Cramer-Rao bound (CRB) and channel estimation error constraints into convex forms, respectively. Based on the Lagrangian dual function and Karush-Kuhn-Tucker (KKT) conditions, it is proved that the optimal beamforming solution is rank-1. Finally, we present comprehensive simulation results to demonstrate two key findings: 1) the proposed algorithm exhibits a favorable convergence rate, and 2) the approach effectively mitigates the impact of channel estimation errors.

Counterfactual explanations play an important role in detecting bias and improving the explainability of data-driven classification models. A counterfactual explanation (CE) is a minimal perturbed data point for which the decision of the model changes. Most of the existing methods can only provide one CE, which may not be achievable for the user. In this work we derive an iterative method to calculate robust CEs, i.e. CEs that remain valid even after the features are slightly perturbed. To this end, our method provides a whole region of CEs allowing the user to choose a suitable recourse to obtain a desired outcome. We use algorithmic ideas from robust optimization and prove convergence results for the most common machine learning methods including logistic regression, decision trees, random forests, and neural networks. Our experiments show that our method can efficiently generate globally optimal robust CEs for a variety of common data sets and classification models.

The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations. Furthermore, we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti curve transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler Characteristic curve transform.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司