亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tactile perception is an increasingly popular gateway in human-machine interaction, yet universal design guidelines for tactile displays are still lacking, largely due to the absence of methods to measure sensibility across skin areas. In this study, we address this gap by developing and evaluating two fully automated vibrotactile tasks that require subjects to discriminate the position of vibrotactile stimuli using a two-interval forced-choice procedure (2IFC). Of the two methodologies, one was initially validated through a preliminary study involving 13 participants. Subsequently, we applied the validated and improved vibrotactile testing procedure to a larger sample of 23 participants, enabling a direct and valid comparison with static perception. Our findings reveal a significantly finer spatial acuity for static stimuli perception compared to vibrotactile stimuli perception from a stimulus separation of 15 mm onwards. This study introduces a novel method for generating both universal thresholds and individual person-specific data for vibratory perception, marking a critical step towards the development of functional vibrotactile displays. The results underline the need for further research in this area and provide a foundation for the development of universal design guidelines for tactile displays.

相關內容

Several task and motion planning algorithms have been proposed recently to design paths for mobile robot teams with collaborative high-level missions specified using formal languages, such as Linear Temporal Logic (LTL). However, the designed paths often lack reactivity to failures of robot capabilities (e.g., sensing, mobility, or manipulation) that can occur due to unanticipated events (e.g., human intervention or system malfunctioning) which in turn may compromise mission performance. To address this novel challenge, in this paper, we propose a new resilient mission planning algorithm for teams of heterogeneous robots with collaborative LTL missions. The robots are heterogeneous with respect to their capabilities while the mission requires applications of these skills at certain areas in the environment in a temporal/logical order. The proposed method designs paths that can adapt to unexpected failures of robot capabilities. This is accomplished by re-allocating sub-tasks to the robots based on their currently functioning skills while minimally disrupting the existing team motion plans. We provide experiments and theoretical guarantees demonstrating the efficiency and resiliency of the proposed algorithm.

Integrating first-order logic constraints (FOLCs) with neural networks is a crucial but challenging problem since it involves modeling intricate correlations to satisfy the constraints. This paper proposes a novel neural layer, LogicMP, whose layers perform mean-field variational inference over an MLN. It can be plugged into any off-the-shelf neural network to encode FOLCs while retaining modularity and efficiency. By exploiting the structure and symmetries in MLNs, we theoretically demonstrate that our well-designed, efficient mean-field iterations effectively mitigate the difficulty of MLN inference, reducing the inference from sequential calculation to a series of parallel tensor operations. Empirical results in three kinds of tasks over graphs, images, and text show that LogicMP outperforms advanced competitors in both performance and efficiency.

We introduce MORPH, a method for co-optimization of hardware design parameters and control policies in simulation using reinforcement learning. Like most co-optimization methods, MORPH relies on a model of the hardware being optimized, usually simulated based on the laws of physics. However, such a model is often difficult to integrate into an effective optimization routine. To address this, we introduce a proxy hardware model, which is always differentiable and enables efficient co-optimization alongside a long-horizon control policy using RL. MORPH is designed to ensure that the optimized hardware proxy remains as close as possible to its realistic counterpart, while still enabling task completion. We demonstrate our approach on simulated 2D reaching and 3D multi-fingered manipulation tasks.

We study functional and concurrent calculi with non-determinism, along with type systems to control resources based on linearity. The interplay between non-determinism and linearity is delicate: careless handling of branches can discard resources meant to be used exactly once. Here we go beyond prior work by considering non-determinism in its standard sense: once a branch is selected, the rest are discarded. Our technical contributions are three-fold. First, we introduce a $\pi$-calculus with non-deterministic choice, governed by session types. Second, we introduce a resource $\lambda$-calculus, governed by intersection types, in which non-determinism concerns fetching of resources from bags. Finally, we connect our two typed non-deterministic calculi via a correct translation.

Trust is an essential aspect of data visualization, as it plays a crucial role in the interpretation and decision-making processes of users. While research in social sciences outlines the multi-dimensional factors that can play a role in trust formation, most data visualization trust researchers employ a single-item scale to measure trust. We address this gap by proposing a comprehensive, multidimensional conceptualization and operationalization of trust in visualization. We do this by applying general theories of trust from social sciences, as well as synthesizing and extending earlier work and factors identified by studies in the visualization field. We apply a two-dimensional approach to trust in visualization, to distinguish between cognitive and affective elements, as well as between visualization and data-specific trust antecedents. We use our framework to design and run a large crowd-sourced study to quantify the role of visual complexity in establishing trust in science visualizations. Our study provides empirical evidence for several aspects of our proposed theoretical framework, most notably the impact of cognition, affective responses, and individual differences when establishing trust in visualizations.

Heightened AI expectations facilitate performance in human-AI interactions through placebo effects. While lowering expectations to control for placebo effects is advisable, overly negative expectations could induce nocebo effects. In a letter discrimination task, we informed participants that an AI would either increase or decrease their performance by adapting the interface, but in reality, no AI was present in any condition. A Bayesian analysis showed that participants had high expectations and performed descriptively better irrespective of the AI description when a sham-AI was present. Using cognitive modeling, we could trace this advantage back to participants gathering more information. A replication study verified that negative AI descriptions do not alter expectations, suggesting that performance expectations with AI are biased and robust to negative verbal descriptions. We discuss the impact of user expectations on AI interactions and evaluation and provide a behavioral placebo marker for human-AI interaction

As machine learning models are increasingly being employed in various high-stakes settings, it becomes important to ensure that predictions of these models are not only adversarially robust, but also readily explainable to relevant stakeholders. However, it is unclear if these two notions can be simultaneously achieved or if there exist trade-offs between them. In this work, we make one of the first attempts at studying the impact of adversarially robust models on actionable explanations which provide end users with a means for recourse. We theoretically and empirically analyze the cost (ease of implementation) and validity (probability of obtaining a positive model prediction) of recourses output by state-of-the-art algorithms when the underlying models are adversarially robust vs. non-robust. More specifically, we derive theoretical bounds on the differences between the cost and the validity of the recourses generated by state-of-the-art algorithms for adversarially robust vs. non-robust linear and non-linear models. Our empirical results with multiple real-world datasets validate our theoretical results and show the impact of varying degrees of model robustness on the cost and validity of the resulting recourses. Our analyses demonstrate that adversarially robust models significantly increase the cost and reduce the validity of the resulting recourses, thus shedding light on the inherent trade-offs between adversarial robustness and actionable explanations

The ability for robotic systems to understand human language and execute grasping actions is a pivotal challenge in the field of robotics. In target-oriented grasping, prior researches achieve matching human textual commands with images of target objects. However, these works are hard to understand complex or flexible instructions. Moreover, these works lack the capability to autonomously assess the feasibility of instructions, leading to blindly execute grasping tasks even there is no target object. In this paper, we introduce a combination model called QwenGrasp, which combines a large vision language model with a 6-DoF grasp network. By leveraging a pre-trained large vision language model, our approach is capable of working in open-world with natural human language environments, accepting complex and flexible instructions. Furthermore, the specialized grasp network ensures the effectiveness of the generated grasp pose. A series of experiments conducted in real world environment show that our method exhibits a superior ability to comprehend human intent. Additionally, when accepting erroneous instructions, our approach has the capability to suspend task execution and provide feedback to humans, improving safety.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.

北京阿比特科技有限公司