亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A robotic swarm may encounter traffic congestion when many robots simultaneously attempt to reach the same area. For solving that efficiently, robots must execute decentralised traffic control algorithms. In this work, we propose a measure for evaluating the access efficiency of a common target area as the number of robots in the swarm rises: the common target area throughput. We demonstrate that the throughput of a target region with a limited area as the time tends to infinity -- the asymptotic throughput -- is finite, opposed to the relation arrival time at target per number of robots that tends to infinity. Using this measure, we can analytically compare the effectiveness of different algorithms. In particular, we propose and formally evaluate three different theoretical strategies for getting to a circular target area: (i) forming parallel queues towards the target area, (ii) forming a hexagonal packing through a corridor going to the target, and (iii) making multiple curved trajectories towards the boundary of the target area. We calculate the throughput for a fixed time and the asymptotic throughput for these strategies. Additionally, we corroborate these results by simulations, showing that when an algorithm has higher throughput, its arrival time per number of robots is lower. Thus, we conclude that using throughput is well suited for comparing congestion algorithms for a common target area in robotic swarms even if we do not have their closed asymptotic equation.

相關內容

機(ji)(ji)(ji)器(qi)人(ren)(英語:Robot)包括(kuo)一切模(mo)擬(ni)人(ren)類(lei)(lei)行(xing)為或思想(xiang)與(yu)模(mo)擬(ni)其他生物的機(ji)(ji)(ji)械(如機(ji)(ji)(ji)器(qi)狗(gou),機(ji)(ji)(ji)器(qi)貓等)。狹義上對機(ji)(ji)(ji)器(qi)人(ren)的定義還有很多(duo)分類(lei)(lei)法及爭議,有些電(dian)(dian)腦(nao)程(cheng)序甚至也被稱為機(ji)(ji)(ji)器(qi)人(ren)。在當(dang)代工業中,機(ji)(ji)(ji)器(qi)人(ren)指能自動(dong)運行(xing)任(ren)務的人(ren)造機(ji)(ji)(ji)器(qi)設(she)備(bei),用以取代或協助人(ren)類(lei)(lei)工作,一般會(hui)是(shi)機(ji)(ji)(ji)電(dian)(dian)設(she)備(bei),由計算機(ji)(ji)(ji)程(cheng)序或是(shi)電(dian)(dian)子(zi)電(dian)(dian)路控制。

知識薈萃

精(jing)品入(ru)門和進階教程(cheng)、論文和代碼(ma)整(zheng)理(li)等

更多

查看(kan)相關VIP內容(rong)、論文、資(zi)訊等

High-quality articulatory speech synthesis has many potential applications in speech science and technology. However, developing appropriate mappings from linguistic specification to articulatory gestures is difficult and time consuming. In this paper we construct an optimisation-based framework as a first step towards learning these mappings without manual intervention. We demonstrate the production of syllables with complex onsets and discuss the quality of the articulatory gestures with reference to coarticulation.

The stochastic nature of iterative optimization heuristics leads to inherently noisy performance measurements. Since these measurements are often gathered once and then used repeatedly, the number of collected samples will have a significant impact on the reliability of algorithm comparisons. We show that care should be taken when making decisions based on limited data. Particularly, we show that the number of runs used in many benchmarking studies, e.g., the default value of 15 suggested by the COCO environment, can be insufficient to reliably rank algorithms on well-known numerical optimization benchmarks. Additionally, methods for automated algorithm configuration are sensitive to insufficient sample sizes. This may result in the configurator choosing a `lucky' but poor-performing configuration despite exploring better ones. We show that relying on mean performance values, as many configurators do, can require a large number of runs to provide accurate comparisons between the considered configurations. Common statistical tests can greatly improve the situation in most cases but not always. We show examples of performance losses of more than 20%, even when using statistical races to dynamically adjust the number of runs, as done by irace. Our results underline the importance of appropriately considering the statistical distribution of performance values.

We consider the problem of training a classification model with group annotated training data. Recent work has established that, if there is distribution shift across different groups, models trained using the standard empirical risk minimization (ERM) objective suffer from poor performance on minority groups and that group distributionally robust optimization (Group-DRO) objective is a better alternative. The starting point of this paper is the observation that though Group-DRO performs better than ERM on minority groups for some benchmark datasets, there are several other datasets where it performs much worse than ERM. Inspired by ideas from the closely related problem of domain generalization, this paper proposes a new and simple algorithm that explicitly encourages learning of features that are shared across various groups. The key insight behind our proposed algorithm is that while Group-DRO focuses on groups with worst regularized loss, focusing instead, on groups that enable better performance even on other groups, could lead to learning of shared/common features, thereby enhancing minority performance beyond what is achieved by Group-DRO. Empirically, we show that our proposed algorithm matches or achieves better performance compared to strong contemporary baselines including ERM and Group-DRO on standard benchmarks on both minority groups and across all groups. Theoretically, we show that the proposed algorithm is a descent method and finds first order stationary points of smooth nonconvex functions.

Machine learning and computational intelligence technologies gain more and more popularity as possible solution for issues related to the power grid. One of these issues, the power flow calculation, is an iterative method to compute the voltage magnitudes of the power grid's buses from power values. Machine learning and, especially, artificial neural networks were successfully used as surrogates for the power flow calculation. Artificial neural networks highly rely on the quality and size of the training data, but this aspect of the process is apparently often neglected in the works we found. However, since the availability of high quality historical data for power grids is limited, we propose the Correlation Sampling algorithm. We show that this approach is able to cover a larger area of the sampling space compared to different random sampling algorithms from the literature and a copula-based approach, while at the same time inter-dependencies of the inputs are taken into account, which, from the other algorithms, only the copula-based approach does.

We present a data-efficient framework for solving sequential decision-making problems which exploits the combination of reinforcement learning (RL) and latent variable generative models. The framework, called GenRL, trains deep policies by introducing an action latent variable such that the feed-forward policy search can be divided into two parts: (i) training a sub-policy that outputs a distribution over the action latent variable given a state of the system, and (ii) unsupervised training of a generative model that outputs a sequence of motor actions conditioned on the latent action variable. GenRL enables safe exploration and alleviates the data-inefficiency problem as it exploits prior knowledge about valid sequences of motor actions. Moreover, we provide a set of measures for evaluation of generative models such that we are able to predict the performance of the RL policy training prior to the actual training on a physical robot. We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training on two robotics tasks: shooting a hockey puck and throwing a basketball. Furthermore, we empirically demonstrate that GenRL is the only method which can safely and efficiently solve the robotics tasks compared to two state-of-the-art RL methods.

In this paper, we investigate the problem of Semantic Segmentation for agricultural aerial imagery. We observe that the existing methods used for this task are designed without considering two characteristics of the aerial data: (i) the top-down perspective implies that the model cannot rely on a fixed semantic structure of the scene, because the same scene may be experienced with different rotations of the sensor; (ii) there can be a strong imbalance in the distribution of semantic classes because the relevant objects of the scene may appear at extremely different scales (e.g., a field of crops and a small vehicle). We propose a solution to these problems based on two ideas: (i) we use together a set of suitable augmentation and a consistency loss to guide the model to learn semantic representations that are invariant to the photometric and geometric shifts typical of the top-down perspective (Augmentation Invariance); (ii) we use a sampling method (Adaptive Sampling) that selects the training images based on a measure of pixel-wise distribution of classes and actual network confidence. With an extensive set of experiments conducted on the Agriculture-Vision dataset, we demonstrate that our proposed strategies improve the performance of the current state-of-the-art method.

Nanodrone swarm is formulated by multiple light-weight and low-cost nanodrones to perform the tasks in very challenging environments. Therefore, it is essential to estimate the relative position of nanodrones in the swarm for accurate and safe platooning in inclement indoor environment. However, the vision and infrared sensors are constrained by the line-of-sight perception, and instrumenting extra motion sensors on drone's body is constrained by the nanodrone's form factor and energy-efficiency. This paper presents the design, implementation and evaluation of RFDrone, a system that can sense the relative position of nanodrone in the swarm using wireless signals, which can naturally identify each individual nanodrone. To do so, each light-weight nanodrone is attached with a RF sticker (i.e., called RFID tag), which will be localized by the external RFID reader in the inclement indoor environment. Instead of accurately localizing each RFID-tagged nanodrone, we propose to estimate the relative position of all the RFID-tagged nanodrones in the swarm based on the spatial-temporal phase profiling. We implement an end-to-end physical prototype of RFDrone. Our experimental results show that RFDrone can accurately estimate the relative position of nanodrones in the swarm with average relative localization accuracy of around 0.95 across x, y and z axis, and average accuracy of around 0.93 for nanodrone swarm's geometry estimation.

The dynamic response of the legged robot locomotion is non-Lipschitz and can be stochastic due to environmental uncertainties. To test, validate, and characterize the safety performance of legged robots, existing solutions on observed and inferred risk can be incomplete and sampling inefficient. Some formal verification methods suffer from the model precision and other surrogate assumptions. In this paper, we propose a scenario sampling based testing framework that characterizes the overall safety performance of a legged robot by specifying (i) where (in terms of a set of states) the robot is potentially safe, and (ii) how safe the robot is within the specified set. The framework can also help certify the commercial deployment of the legged robot in real-world environment along with human and compare safety performance among legged robots with different mechanical structures and dynamic properties. The proposed framework is further deployed to evaluate a group of state-of-the-art legged robot locomotion controllers from various model-based, deep neural network involved, and reinforcement learning based methods in the literature. Among a series of intended work domains of the studied legged robots (e.g. tracking speed on sloped surface, with abrupt changes on demanded velocity, and against adversarial push-over disturbances), we show that the method can adequately capture the overall safety characterization and the subtle performance insights. Many of the observed safety outcomes, to the best of our knowledge, have never been reported by the existing work in the legged robot literature.

Adversarial training (i.e., training on adversarially perturbed input data) is a well-studied method for making neural networks robust to potential adversarial attacks during inference. However, the improved robustness does not come for free but rather is accompanied by a decrease in overall model accuracy and performance. Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off but inflict a net loss when measured in holistic robot performance. This work revisits the robustness-accuracy trade-off in robot learning by systematically analyzing if recent advances in robust training methods and theory in conjunction with adversarial robot learning can make adversarial training suitable for real-world robot applications. We evaluate a wide variety of robot learning tasks ranging from autonomous driving in a high-fidelity environment amenable to sim-to-real deployment, to mobile robot gesture recognition. Our results demonstrate that, while these techniques make incremental improvements on the trade-off on a relative scale, the negative side-effects caused by adversarial training still outweigh the improvements by an order of magnitude. We conclude that more substantial advances in robust learning methods are necessary before they can benefit robot learning tasks in practice.

We present a method for the control of robot swarms which allows the shaping and the translation of patterns of simple robots ("smart particles"), using two types of devices. These two types represent a hierarchy: a larger group of simple, oblivious robots (which we call the workers) that is governed by simple local attraction forces, and a smaller group (the guides) with sufficient mission knowledge to create and maintain a desired pattern by operating on the local forces of the former. This framework exploits the knowledge of the guides, which coordinate to shape the workers like smart particles by changing their interaction parameters. We study the approach with a large scale simulation experiment in a physics based simulator with up to 1000 robots forming three different patterns. Our experiments reveal that the approach scales well with increasing robot numbers, and presents little pattern distortion for a set of target moving shapes. We evaluate the approach on a physical swarm of robots that use visual inertial odometry to compute their relative positions and obtain results that are comparable with simulation. This work lays foundation for designing and coordinating configurable smart particles, with applications in smart materials and nanomedicine.

北京阿比特科技有限公司