亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show subexponential lower bounds (i.e., $2^{\Omega (n^c)}$) on the smoothed complexity of the classical Howard's Policy Iteration algorithm for Markov Decision Processes. The bounds hold for the total reward and the average reward criteria. The constructions are robust in the sense that the subexponential bound holds not only on the average for independent random perturbations of the MDP parameters (transition probabilities and rewards), but for all arbitrary perturbations within an inverse polynomial range. We show also an exponential lower bound on the worst-case complexity for the simple reachability objective.

相關內容

Recently, the impressive empirical success of policy gradient (PG) methods has catalyzed the development of their theoretical foundations. Despite the huge efforts directed at the design of efficient stochastic PG-type algorithms, the understanding of their convergence to a globally optimal policy is still limited. In this work, we develop improved global convergence guarantees for a general class of Fisher-non-degenerate parameterized policies which allows to address the case of continuous state action spaces. First, we propose a Normalized Policy Gradient method with Implicit Gradient Transport (N-PG-IGT) and derive a $\tilde{\mathcal{O}}(\varepsilon^{-2.5})$ sample complexity of this method for finding a global $\varepsilon$-optimal policy. Improving over the previously known $\tilde{\mathcal{O}}(\varepsilon^{-3})$ complexity, this algorithm does not require the use of importance sampling or second-order information and samples only one trajectory per iteration. Second, we further improve this complexity to $\tilde{ \mathcal{\mathcal{O}} }(\varepsilon^{-2})$ by considering a Hessian-Aided Recursive Policy Gradient ((N)-HARPG) algorithm enhanced with a correction based on a Hessian-vector product. Interestingly, both algorithms are $(i)$ simple and easy to implement: single-loop, do not require large batches of trajectories and sample at most two trajectories per iteration; $(ii)$ computationally and memory efficient: they do not require expensive subroutines at each iteration and can be implemented with memory linear in the dimension of parameters.

In this note, we prove that the following function space with absolutely convergent Fourier series \[ F_d:=\left\{ f\in L^2([0,1)^d)\:\middle| \: \|f\|:=\sum_{\boldsymbol{k}\in \mathbb{Z}^d}|\hat{f}(\boldsymbol{k})| \max\left(1,\min_{j\in \mathrm{supp}(\boldsymbol{k})}\log |k_j|\right) <\infty \right\}\] with $\hat{f}(\boldsymbol{k})$ being the $\boldsymbol{k}$-th Fourier coefficient of $f$ and $\mathrm{supp}(\boldsymbol{k}):=\{j\in \{1,\ldots,d\}\mid k_j\neq 0\}$ is polynomially tractable for multivariate integration in the worst-case setting. Here polynomial tractability means that the minimum number of function evaluations required to make the worst-case error less than or equal to a tolerance $\varepsilon$ grows only polynomially with respect to $\varepsilon^{-1}$ and $d$. It is important to remark that the function space $F_d$ is unweighted, that is, all variables contribute equally to the norm of functions. Our tractability result is in contrast to those for most of the unweighted integration problems studied in the literature, in which polynomial tractability does not hold and the problem suffers from the curse of dimensionality. Our proof is constructive in the sense that we provide an explicit quasi-Monte Carlo rule that attains a desired worst-case error bound.

Bayesian Neural Networks (BNNs) can overcome the problem of overconfidence that plagues traditional frequentist deep neural networks, and are hence considered to be a key enabler for reliable AI systems. However, conventional hardware realizations of BNNs are resource intensive, requiring the implementation of random number generators for synaptic sampling. Owing to their inherent stochasticity during programming and read operations, nanoscale memristive devices can be directly leveraged for sampling, without the need for additional hardware resources. In this paper, we introduce a novel Phase Change Memory (PCM)-based hardware implementation for BNNs with binary synapses. The proposed architecture consists of separate weight and noise planes, in which PCM cells are configured and operated to represent the nominal values of weights and to generate the required noise for sampling, respectively. Using experimentally observed PCM noise characteristics, for the exemplary Breast Cancer Dataset classification problem, we obtain hardware accuracy and expected calibration error matching that of an 8-bit fixed-point (FxP8) implementation, with projected savings of over 9$\times$ in terms of core area transistor count.

Robust Markov Decision Processes (MDPs) are getting more attention for learning a robust policy which is less sensitive to environment changes. There are an increasing number of works analyzing sample-efficiency of robust MDPs. However, most works study robust MDPs in a model-based regime, where the transition probability needs to be estimated and requires $\mathcal{O}(|\mathcal{S}|^2|\mathcal{A}|)$ storage in memory. A common way to solve robust MDPs is to formulate them as a distributionally robust optimization (DRO) problem. However, solving a DRO problem is non-trivial, so prior works typically assume a strong oracle to obtain the optimal solution of the DRO problem easily. To remove the need for an oracle, we first transform the original robust MDPs into an alternative form, as the alternative form allows us to use stochastic gradient methods to solve the robust MDPs. Moreover, we prove the alternative form still preserves the role of robustness. With this new formulation, we devise a sample-efficient algorithm to solve the robust MDPs in a model-free regime, from which we benefit lower memory space $\mathcal{O}(|\mathcal{S}||\mathcal{A}|)$ without using the oracle. Finally, we validate our theoretical findings via numerical experiments and show the efficiency to solve the alternative form of robust MDPs.

The problem of how to genetically modify cells in order to maximize a certain cellular phenotype has taken center stage in drug development over the last few years (with, for example, genetically edited CAR-T, CAR-NK, and CAR-NKT cells entering cancer clinical trials). Exhausting the search space for all possible genetic edits (perturbations) or combinations thereof is infeasible due to cost and experimental limitations. This work provides a theoretically sound framework for iteratively exploring the space of perturbations in pooled batches in order to maximize a target phenotype under an experimental budget. Inspired by this application domain, we study the problem of batch query bandit optimization and introduce the Optimistic Arm Elimination ($\mathrm{OAE}$) principle designed to find an almost optimal arm under different functional relationships between the queries (arms) and the outputs (rewards). We analyze the convergence properties of $\mathrm{OAE}$ by relating it to the Eluder dimension of the algorithm's function class and validate that $\mathrm{OAE}$ outperforms other strategies in finding optimal actions in experiments on simulated problems, public datasets well-studied in bandit contexts, and in genetic perturbation datasets when the regression model is a deep neural network. OAE also outperforms the benchmark algorithms in 3 of 4 datasets in the GeneDisco experimental planning challenge.

A Deep Neural Network (DNN) is a composite function of vector-valued functions, and in order to train a DNN, it is necessary to calculate the gradient of the loss function with respect to all parameters. This calculation can be a non-trivial task because the loss function of a DNN is a composition of several nonlinear functions, each with numerous parameters. The Backpropagation (BP) algorithm leverages the composite structure of the DNN to efficiently compute the gradient. As a result, the number of layers in the network does not significantly impact the complexity of the calculation. The objective of this paper is to express the gradient of the loss function in terms of a matrix multiplication using the Jacobian operator. This can be achieved by considering the total derivative of each layer with respect to its parameters and expressing it as a Jacobian matrix. The gradient can then be represented as the matrix product of these Jacobian matrices. This approach is valid because the chain rule can be applied to a composition of vector-valued functions, and the use of Jacobian matrices allows for the incorporation of multiple inputs and outputs. By providing concise mathematical justifications, the results can be made understandable and useful to a broad audience from various disciplines.

Using gradient descent (GD) with fixed or decaying step-size is a standard practice in unconstrained optimization problems. However, when the loss function is only locally convex, such a step-size schedule artificially slows GD down as it cannot explore the flat curvature of the loss function. To overcome that issue, we propose to exponentially increase the step-size of the GD algorithm. Under homogeneous assumptions on the loss function, we demonstrate that the iterates of the proposed \emph{exponential step size gradient descent} (EGD) algorithm converge linearly to the optimal solution. Leveraging that optimization insight, we then consider using the EGD algorithm for solving parameter estimation under both regular and non-regular statistical models whose loss function becomes locally convex when the sample size goes to infinity. We demonstrate that the EGD iterates reach the final statistical radius within the true parameter after a logarithmic number of iterations, which is in stark contrast to a \emph{polynomial} number of iterations of the GD algorithm in non-regular statistical models. Therefore, the total computational complexity of the EGD algorithm is \emph{optimal} and exponentially cheaper than that of the GD for solving parameter estimation in non-regular statistical models while being comparable to that of the GD in regular statistical settings. To the best of our knowledge, it resolves a long-standing gap between statistical and algorithmic computational complexities of parameter estimation in non-regular statistical models. Finally, we provide targeted applications of the general theory to several classes of statistical models, including generalized linear models with polynomial link functions and location Gaussian mixture models.

In this article, we study the complexity of weighted team definability for logics with team semantics. This problem is a natural analogue of one of the most studied problems in parameterized complexity, the notion of weighted Fagin-definability, which is formulated in terms of satisfaction of first-order formulas with free relation variables. We focus on the parameterized complexity of weighted team definability for a fixed formula phi of central team-based logics. Given a first-order structure A and the parameter value k as input, the question is to determine whether A,T models phi for some team T of size k. We show several results on the complexity of this problem for dependence, independence, and inclusion logic formulas. Moreover, we also relate the complexity of weighted team definability to the complexity classes in the well-known W-hierarchy as well as paraNP.

In this work, we study a natural nonparametric estimator of the transition probability matrices of a finite controlled Markov chain. We consider an offline setting with a fixed dataset, collected using a so-called logging policy. We develop sample complexity bounds for the estimator and establish conditions for minimaxity. Our statistical bounds depend on the logging policy through its mixing properties. We show that achieving a particular statistical risk bound involves a subtle and interesting trade-off between the strength of the mixing properties and the number of samples. We demonstrate the validity of our results under various examples, such as ergodic Markov chains, weakly ergodic inhomogeneous Markov chains, and controlled Markov chains with non-stationary Markov, episodic, and greedy controls. Lastly, we use these sample complexity bounds to establish concomitant ones for offline evaluation of stationary Markov control policies.

The Boolean Satisfiability (SAT) problem stands out as an attractive NP-complete problem in theoretic computer science and plays a central role in a broad spectrum of computing-related applications. Exploiting and tuning SAT solvers under numerous scenarios require massive high-quality industry-level SAT instances, which unfortunately are quite limited in the real world. To address the data insufficiency issue, in this paper, we propose W2SAT, a framework to generate SAT formulas by learning intrinsic structures and properties from given real-world/industrial instances in an implicit fashion. To this end, we introduce a novel SAT representation called Weighted Literal Incidence Graph (WLIG), which exhibits strong representation ability and generalizability against existing counterparts, and can be efficiently generated via a specialized learning-based graph generative model. Decoding from WLIGs into SAT problems is then modeled as finding overlapping cliques with a novel hill-climbing optimization method termed Optimal Weight Coverage (OWC). Experiments demonstrate the superiority of our WLIG-induced approach in terms of graph metrics, efficiency, and scalability in comparison to previous methods. Additionally, we discuss the limitations of graph-based SAT generation for real-world applications, especially when utilizing generated instances for SAT solver parameter-tuning, and pose some potential directions.

北京阿比特科技有限公司