Navigating the landscape of particle accelerators has become increasingly challenging with recent surges in contributions. These intricate devices challenge comprehension, even within individual facilities. To address this, we introduce PACuna, a fine-tuned language model refined through publicly available accelerator resources like conferences, pre-prints, and books. We automated data collection and question generation to minimize expert involvement and make the data publicly available. PACuna demonstrates proficiency in addressing intricate accelerator questions, validated by experts. Our approach shows adapting language models to scientific domains by fine-tuning technical texts and auto-generated corpora capturing the latest developments can further produce pre-trained models to answer some intricate questions that commercially available assistants cannot and can serve as intelligent assistants for individual facilities.
Graph contrastive learning (GCL) has recently achieved substantial advancements. Existing GCL approaches compare two different ``views'' of the same graph in order to learn node/graph representations. The underlying assumption of these studies is that the graph augmentation strategy is capable of generating several different graph views such that the graph views are structurally different but semantically similar to the original graphs, and thus the ground-truth labels of the original and augmented graph/nodes can be regarded identical in contrastive learning. However, we observe that this assumption does not always hold. For instance, the deletion of a super-node within a social network can exert a substantial influence on the partitioning of communities for other nodes. Similarly, any perturbation to nodes or edges in a molecular graph will change the labels of the graph. Therefore, we believe that augmenting the graph, accompanied by an adaptation of the labels used for the contrastive loss, will facilitate the encoder to learn a better representation. Based on this idea, we propose ID-MixGCL, which allows the simultaneous interpolation of input nodes and corresponding identity labels to obtain soft-confidence samples, with a controllable degree of change, leading to the capture of fine-grained representations from self-supervised training on unlabeled graphs. Experimental results demonstrate that ID-MixGCL improves performance on graph classification and node classification tasks, as demonstrated by significant improvements on the Cora, IMDB-B, IMDB-M, and PROTEINS datasets compared to state-of-the-art techniques, by 3-29% absolute points.
People routinely rely on data to make decisions, but the process can be riddled with biases. We show that patterns in data might be noticed first or more strongly, depending on how the data is visually represented or what the viewer finds salient. We also demonstrate that viewer interpretation of data is similar to that of 'ambiguous figures' such that two people looking at the same data can come to different decisions. In our studies, participants read visualizations depicting competitions between two entities, where one has a historical lead (A) but the other has been gaining momentum (B) and predicted a winner, across two chart types and three annotation approaches. They either saw the historical lead as salient and predicted that A would win, or saw the increasing momentum as salient and predicted B to win. These results suggest that decisions can be influenced by both how data are presented and what patterns people find visually salient.
Misaligned incentives in secure software development have long been the focus of research in the economics of security. Product liability, a powerful legal framework in other industries, has been largely ineffective for software products until recent times. However, the rapid regulatory responses to recent global cyberattacks by both the United States and the European Union, together with the (relative) success of the General Data Protection Regulation in defining both duty and standard of care for software vendors, may just enable regulators to use liability to re-align incentives for the benefit of the digital society. Specifically, the recently proposed United States National Cybersecurity Strategy shifts responsibility for cyber incidents back to software vendors. In doing so, the strategy also puts forward the concept of the liability waiver: if a software company voluntarily undergoes and passes an IT security audit, its liability is waived. In this paper, we analyze this audit scenario from the aspect of the software vendor. We propose a mechanism where a software vendor should first undergo a repeated auditing process in each stage of which the vendor decides whether to quit early or stay with additional security investment. We show that the optimal strategy for an opt-in vendor is to never quit; and exert cumulative investments in either "one-and-done" or "incremental" manner. We relate the audit mechanism to a liability waiver insurance policy and revealed its effect on reshaping the vendor's risk perception. We also discuss influence of audit quality on the vendor's incentives and pinpoint that a desirable audit rule should be highly accurate and less strict.
The automation of resume screening is a crucial aspect of the recruitment process in organizations. Automated resume screening systems often encompass a range of natural language processing (NLP) tasks. The advent of Large Language Models (LLMs) has notably enhanced the efficacy of these systems, showcasing their robust generalization abilities across diverse language-related tasks. Accompanying these developments are various agents based on LLMs, which facilitate their application in practical scenarios. This paper introduces a novel LLM-based agent framework for resume screening, aimed at enhancing efficiency and time management in recruitment processes. Our framework is distinct in its ability to efficiently summarize and grade each resume from a large dataset. Moreover, it utilizes LLM agents for decision-making, determining which candidates receive job offers, or which ones to bring in for interviews. To evaluate our framework, we constructed a dataset from actual resumes and conducted simulate a resume screening process. Subsequently, the outcomes of the simulation experiment were compared and subjected to detailed analysis. The results demonstrate that our automated resume screening framework is 11 times faster than traditional manual methods. Furthermore, by fine-tuning the LLMs, we observed a significant improvement in the F1 score, reaching 87.73\%, during the resume sentence classification phase. In the resume summarization and grading phase, our fine-tuned model surpassed the baseline performance of the GPT-3.5 model. Analysis of the decision-making efficacy of the LLM agents in the final offer stage further underscores the potential of LLM agents in transforming resume screening processes.
Parameter efficient finetuning has emerged as a viable solution for improving the performance of Large Language Models without requiring massive resources and compute. Prior work on multilingual evaluation has shown that there is a large gap between the performance of LLMs on English and other languages. Further, there is also a large gap between the performance of smaller open-source models and larger LLMs. Finetuning can be an effective way to bridge this gap and make language models more equitable. In this work, we finetune the LLaMA-7B and Mistral-7B models on synthetic multilingual instruction tuning data to determine its effect on model performance on five downstream tasks covering twenty three languages in all. Additionally, we experiment with various parameters, such as rank for low-rank adaptation and values of quantisation to determine their effects on downstream performance and find that higher rank and higher quantisation values benefit low-resource languages. We find that parameter efficient finetuning of smaller open source models sometimes bridges the gap between the performance of these models and the larger ones, however, English performance can take a hit. We also find that finetuning sometimes improves performance on low-resource languages, while degrading performance on high-resource languages.
Memory corruption is an important class of vulnerability that can be leveraged to craft control flow hijacking attacks. Control Flow Integrity (CFI) provides protection against such attacks. Application of type-based CFI policies requires information regarding the number and type of function arguments. Binary-level type recovery is inherently speculative, which motivates the need for an evaluation framework to assess the effectiveness of binary-level CFI techniques compared with their source-level counterparts, where such type information is fully and accurately accessible. In this work, we develop a novel, generalized and extensible framework to assess how the program analysis information we get from state-of-the-art binary analysis tools affects the efficacy of type-based CFI techniques. We introduce new and insightful metrics to quantitatively compare source independent CFI policies with their ground truth source aware counterparts. We leverage our framework to evaluate binary-level CFI policies implemented using program analysis information extracted from the IDA Pro binary analyzer and compared with the ground truth information obtained from the LLVM compiler, and present our observations.
Chemistry experimentation is often resource- and labor-intensive. Despite the many benefits incurred by the integration of advanced and special-purpose lab equipment, many aspects of experimentation are still manually conducted by chemists, for example, polishing an electrode in electrochemistry experiments. Traditional lab automation infrastructure faces challenges when it comes to flexibly adapting to new chemistry experiments. To address this issue, we propose a human-friendly and flexible robotic system, ORGANA, that automates a diverse set of chemistry experiments. It is capable of interacting with chemists in the lab through natural language, using Large Language Models (LLMs). ORGANA keeps scientists informed by providing timely reports that incorporate statistical analyses. Additionally, it actively engages with users when necessary for disambiguation or troubleshooting. ORGANA can reason over user input to derive experiment goals, and plan long sequences of both high-level tasks and low-level robot actions while using feedback from the visual perception of the environment. It also supports scheduling and parallel execution for experiments that require resource allocation and coordination between multiple robots and experiment stations. We show that ORGANA successfully conducts a diverse set of chemistry experiments, including solubility assessment, pH measurement, recrystallization, and electrochemistry experiments. For the latter, we show that ORGANA robustly executes a long-horizon plan, comprising 19 steps executed in parallel, to characterize the electrochemical properties of quinone derivatives, a class of molecules used in rechargeable flow batteries. Our user study indicates that ORGANA significantly improves many aspects of user experience while reducing their physical workload. More details about ORGANA can be found at //ac-rad.github.io/organa/.
The cyber-threat landscape has evolved tremendously in recent years, with new threat variants emerging daily, and large-scale coordinated campaigns becoming more prevalent. In this study, we propose CELEST (CollaborativE LEarning for Scalable Threat detection), a federated machine learning framework for global threat detection over HTTP, which is one of the most commonly used protocols for malware dissemination and communication. CELEST leverages federated learning in order to collaboratively train a global model across multiple clients who keep their data locally, thus providing increased privacy and confidentiality assurances. Through a novel active learning component integrated with the federated learning technique, our system continuously discovers and learns the behavior of new, evolving, and globally-coordinated cyber threats. We show that CELEST is able to expose attacks that are largely invisible to individual organizations. For instance, in one challenging attack scenario with data exfiltration malware, the global model achieves a three-fold increase in Precision-Recall AUC compared to the local model. We deploy CELEST on two university networks and show that it is able to detect the malicious HTTP communication with high precision and low false positive rates. Furthermore, during its deployment, CELEST detected a set of previously unknown 42 malicious URLs and 20 malicious domains in one day, which were confirmed to be malicious by VirusTotal.
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.