Extensive experiments suggest that motor coordination among human participants may contribute to social affinity and emotional attachment, which has great potential in the clinical treatment of social disorders or schizophrenia. Mirror game provides an effective experimental paradigm for studying social motor coordination. Nevertheless, the lack of movement richness prevents the emergence of high-level coordination in the existing one-dimensional experiments. To tackle this problem, this work develops a two-dimensional experimental paradigm of mirror game by playing waggle dance between two participants. In particular, an online control architecture of customized virtual player is created to coordinate with human player. Therein, an iterative learning control algorithm is proposed by integrating position tracking and behavior imitation with prescribed kinematic feature. Moreover, convergence analysis of control algorithm is conducted to guarantee the online performance of virtual player. Finally, the proposed control strategy is validated by matching experimental data and compared with other control methods using a set of performance indexes.
Accurately assessing failure risk due to asset deterioration and/or extreme events is essential for efficient transportation asset management. Traditional risk assessment is conducted for individual assets by either focusing on the economic risk to asset owners or relying on empirical proxies of systemwide consequences. Risk assessment directly based on system performance (e.g., network capacity) is largely limited due to (1) an exponentially increasing number of system states for accurate performance evaluation, (2) potential contribution of system states with low likelihood yet high consequences (i.e., "gray swan" events) to system state, and (3) lack of actionable information for asset management from risk assessment results. To address these challenges, this paper introduces a novel approach to performance-based risk assessment for large-scale transportation networks. The new approach is underpinned by the Transitional Markov Chain Monte Carlo (TMCMC) method, a sequential sampling technique originally developed for Bayesian updating. The risk assessment problem is reformulated such that (1) the system risk becomes the normalizing term (i.e., evidence) of a high-dimensional posterior distribution, and (2) the final posterior samples from TMCMC yield risk-based importance measures for different assets. Two types of analytical examples are developed to demonstrate the effectiveness and efficiency of the proposed approach as the number of assets increases and the influence of gray swan events grows. The new approach is further applied in a case study on the Oregon highway network, serving as a real-world example of large-scale transportation networks.
Multispectral pedestrian detection has gained significant attention in recent years, particularly in autonomous driving applications. To address the challenges posed by adversarial illumination conditions, the combination of thermal and visible images has demonstrated its advantages. However, existing fusion methods rely on the critical assumption that the RGB-Thermal (RGB-T) image pairs are fully overlapping. These assumptions often do not hold in real-world applications, where only partial overlap between images can occur due to sensors configuration. Moreover, sensor failure can cause loss of information in one modality. In this paper, we propose a novel module called the Hybrid Attention (HA) mechanism as our main contribution to mitigate performance degradation caused by partial overlap and sensor failure, i.e. when at least part of the scene is acquired by only one sensor. We propose an improved RGB-T fusion algorithm, robust against partial overlap and sensor failure encountered during inference in real-world applications. We also leverage a mobile-friendly backbone to cope with resource constraints in embedded systems. We conducted experiments by simulating various partial overlap and sensor failure scenarios to evaluate the performance of our proposed method. The results demonstrate that our approach outperforms state-of-the-art methods, showcasing its superiority in handling real-world challenges.
Accurate nutrition estimation helps people make informed dietary choices and is essential in the prevention of serious health complications. We present NutriBench, the first publicly available natural language meal description nutrition benchmark. NutriBench consists of 11,857 meal descriptions generated from real-world global dietary intake data. The data is human-verified and annotated with macro-nutrient labels, including carbohydrates, proteins, fats, and calories. We conduct an extensive evaluation of NutriBench on the task of carbohydrate estimation, testing twelve leading Large Language Models (LLMs), including GPT-4o, Llama3.1, Qwen2, Gemma2, and OpenBioLLM models, using standard, Chain-of-Thought and Retrieval-Augmented Generation strategies. Additionally, we present a study involving professional nutritionists, finding that LLMs can provide more accurate and faster estimates. Finally, we perform a real-world risk assessment by simulating the effect of carbohydrate predictions on the blood glucose levels of individuals with diabetes. Our work highlights the opportunities and challenges of using LLMs for nutrition estimation, demonstrating their potential to aid professionals and laypersons and improve health outcomes. Our benchmark is publicly available at: //mehak126.github.io/nutribench.html
Is explainability a false promise? This debate has emerged from the insufficient evidence that explanations help people in situations they are introduced for. More human-centered, application-grounded evaluations of explanations are needed to settle this. Yet, with no established guidelines for such studies in NLP, researchers accustomed to standardized proxy evaluations must discover appropriate measurements, tasks, datasets, and sensible models for human-AI teams in their studies. To aid with this, we first review existing metrics suitable for application-grounded evaluation. We then establish criteria to select appropriate datasets, and using them, we find that only 4 out of over 50 datasets available for explainability research in NLP meet them. We then demonstrate the importance of reassessing the state of the art to form and study human-AI teams: teaming people with models for certain tasks might only now start to make sense, and for others, it remains unsound. Finally, we present the exemplar studies of human-AI decision-making for one of the identified tasks -- verifying the correctness of a legal claim given a contract. Our results show that providing AI predictions, with or without explanations, does not cause decision makers to speed up their work without compromising performance. We argue for revisiting the setup of human-AI teams and improving automatic deferral of instances to AI, where explanations could play a useful role.
Storytelling is a fundamental aspect of human communication, relying heavily on creativity to produce narratives that are novel, appropriate, and surprising. While large language models (LLMs) have recently demonstrated the ability to generate high-quality stories, their creative capabilities remain underexplored. Previous research has either focused on creativity tests requiring short responses or primarily compared model performance in story generation to that of professional writers. However, the question of whether LLMs exhibit creativity in writing short stories on par with the average human remains unanswered. In this work, we conduct a systematic analysis of creativity in short story generation across LLMs and everyday people. Using a five-sentence creative story task, commonly employed in psychology to assess human creativity, we automatically evaluate model- and human-generated stories across several dimensions of creativity, including novelty, surprise, and diversity. Our findings reveal that while LLMs can generate stylistically complex stories, they tend to fall short in terms of creativity when compared to average human writers.
Humanoids have the potential to be the ideal embodiment in environments designed for humans. Thanks to the structural similarity to the human body, they benefit from rich sources of demonstration data, e.g., collected via teleoperation, motion capture, or even using videos of humans performing tasks. However, distilling a policy from demonstrations is still a challenging problem. While Diffusion Policies (DPs) have shown impressive results in robotic manipulation, their applicability to locomotion and humanoid control remains underexplored. In this paper, we investigate how dataset diversity and size affect the performance of DPs for humanoid whole-body control. In a simulated IsaacGym environment, we generate synthetic demonstrations by training Adversarial Motion Prior (AMP) agents under various Domain Randomization (DR) conditions, and we compare DPs fitted to datasets of different size and diversity. Our findings show that, although DPs can achieve stable walking behavior, successful training of locomotion policies requires significantly larger and more diverse datasets compared to manipulation tasks, even in simple scenarios.
We report assumption-free bounds for any contrast between the probabilities of the potential outcome under exposure and non-exposure when the confounders are missing not at random. We assume that the missingness mechanism is outcome-independent. We also report a sensitivity analysis method to complement our bounds.
The rise of automation has provided an opportunity to achieve higher efficiency in manufacturing processes, yet it often compromises the flexibility required to promptly respond to evolving market needs and meet the demand for customization. Human-robot collaboration attempts to tackle these challenges by combining the strength and precision of machines with human ingenuity and perceptual understanding. In this paper, we conceptualize and propose an implementation framework for an autonomous, machine learning-based manipulator that incorporates human-in-the-loop principles and leverages Extended Reality (XR) to facilitate intuitive communication and programming between humans and robots. Furthermore, the conceptual framework foresees human involvement directly in the robot learning process, resulting in higher adaptability and task generalization. The paper highlights key technologies enabling the proposed framework, emphasizing the importance of developing the digital ecosystem as a whole. Additionally, we review the existent implementation approaches of XR in human-robot collaboration, showcasing diverse perspectives and methodologies. The challenges and future outlooks are discussed, delving into the major obstacles and potential research avenues of XR for more natural human-robot interaction and integration in the industrial landscape.
Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.