亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Differentially private noise mechanisms commonly use symmetric noise distributions. This is attractive both for achieving the differential privacy definition, and for unbiased expectations in the noised answers. However, there are contexts in which a noisy answer only has utility if it is conservative, that is, has known-signed error, which we call a padded answer. Seemingly, it is paradoxical to satisfy the DP definition with one-sided error, but we show how it is possible to bury the paradox into approximate DP's delta parameter. We develop a few mechanisms for one-sided padding mechanisms that always give conservative answers, but still achieve approximate differential privacy. We show how these mechanisms can be applied in a few select areas including making the cardinalities of set intersections and unions revealed in Private Set Intersection protocols differential private and enabling multiparty computation protocols to compute on sparse data which has its exact sizes made differential private rather than performing a fully oblivious more expensive computation.

相關內容

Privacy preserving data analysis (PPDA) has received increasing attention due to a great variety of applications. Local differential privacy (LDP), as an emerging standard that is suitable for PPDA, has been widely deployed into various real-world scenarios to analyze massive data while protecting against many forms of privacy breach. In this study, we are mainly concerned with piecewise transformation technique (PTT) for analyzing numerical data under local differential privacy. We provide a principled framework for PTT in the context of LDP, based on which PTT is studied systematically. As a result, we show that (1) many members in PTTs are asymptotically optimal when used to obtain an unbiased estimator for mean of numerical data, and (2) for a given privacy budget, there is PTT that reaches the theoretical low bound with respect to variance. Next, we prove by studying two classes of PTTs in detail that (1) there do not exist optimal PTTs compared to the well-used technique, i.e., Duchi's scheme, in terms of the consistency noisy variance, (2) on the other hand, one has the ability to find a great number of PTTs that are consistently more optimal than the latter with regard to the worst-case noisy variance, which is never reported so far. When we are restricted to consider only the high privacy level, enough PTTs turn out to be optimal than the well-known Laplace mechanism. Lastly, we prove that for a family of PTTs, the correspondingly theoretical low bound of noisy variance follows $O(\epsilon^{-2})$ when considering the high privacy level.

Learning from continuous data streams via classification/regression is prevalent in many domains. Adapting to evolving data characteristics (concept drift) while protecting data owners' private information is an open challenge. We present a differentially private ensemble solution to this problem with two distinguishing features: it allows an \textit{unbounded} number of ensemble updates to deal with the potentially never-ending data streams under a fixed privacy budget, and it is \textit{model agnostic}, in that it treats any pre-trained differentially private classification/regression model as a black-box. Our method outperforms competitors on real-world and simulated datasets for varying settings of privacy, concept drift, and data distribution.

We study the accuracy of differentially private mechanisms in the continual release model. A continual release mechanism receives a sensitive dataset as a stream of $T$ inputs and produces, after receiving each input, an accurate output on the obtained inputs.In contrast, a batch algorithm receives the data as one batch and produces a single output. We provide the first strong lower bounds on the error of continual release mechanisms. In particular, for two fundamental problems that are widely studied and used in the batch model, we show that the worst case error of every continual release algorithm is $\tilde \Omega(T^{1/3})$ times larger than that of the best batch algorithm. Previous work shows only a polylogarithimic (in $T$) gap between the worst case error achievable in these two models; further, for many problems, including the summation of binary attributes, the polylogarithmic gap is tight (Dwork et al., 2010; Chan et al., 2010). Our results show that problems closely related to summation -- specifically, those that require selecting the largest of a set of sums -- are fundamentally harder in the continual release model than in the batch model. Our lower bounds assume only that privacy holds for streams fixed in advance (the "nonadaptive" setting). However, we provide matching upper bounds that hold in a model where privacy is required even for adaptively selected streams. This model may be of independent interest.

We give the first polynomial time and sample $(\epsilon, \delta)$-differentially private (DP) algorithm to estimate the mean, covariance and higher moments in the presence of a constant fraction of adversarial outliers. Our algorithm succeeds for families of distributions that satisfy two well-studied properties in prior works on robust estimation: certifiable subgaussianity of directional moments and certifiable hypercontractivity of degree 2 polynomials. Our recovery guarantees hold in the "right affine-invariant norms": Mahalanobis distance for mean, multiplicative spectral and relative Frobenius distance guarantees for covariance and injective norms for higher moments. Prior works obtained private robust algorithms for mean estimation of subgaussian distributions with bounded covariance. For covariance estimation, ours is the first efficient algorithm (even in the absence of outliers) that succeeds without any condition-number assumptions. Our algorithms arise from a new framework that provides a general blueprint for modifying convex relaxations for robust estimation to satisfy strong worst-case stability guarantees in the appropriate parameter norms whenever the algorithms produce witnesses of correctness in their run. We verify such guarantees for a modification of standard sum-of-squares (SoS) semidefinite programming relaxations for robust estimation. Our privacy guarantees are obtained by combining stability guarantees with a new "estimate dependent" noise injection mechanism in which noise scales with the eigenvalues of the estimated covariance. We believe this framework will be useful more generally in obtaining DP counterparts of robust estimators. Independently of our work, Ashtiani and Liaw [AL21] also obtained a polynomial time and sample private robust estimation algorithm for Gaussian distributions.

We propose and analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints. Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution ($m \ge 1$ samples), providing more stringent but more realistic protection against information leaks. We show that for high-dimensional mean estimation, empirical risk minimization with smooth losses, stochastic convex optimization, and learning hypothesis classes with finite metric entropy, the privacy cost decreases as $O(1/\sqrt{m})$ as users provide more samples. In contrast, when increasing the number of users $n$, the privacy cost decreases at a faster $O(1/n)$ rate. We complement these results with lower bounds showing the minimax optimality of our algorithms for mean estimation and stochastic convex optimization. Our algorithms rely on novel techniques for private mean estimation in arbitrary dimension with error scaling as the concentration radius $\tau$ of the distribution rather than the entire range.

Differential privacy (DP) has become the de facto standard of privacy preservation due to its strong protection and sound mathematical foundation, which is widely adopted in different applications such as big data analysis, graph data process, machine learning, deep learning, and federated learning. Although DP has become an active and influential area, it is not the best remedy for all privacy problems in different scenarios. Moreover, there are also some misunderstanding, misuse, and great challenges of DP in specific applications. In this paper, we point out a series of limits and open challenges of corresponding research areas. Besides, we offer potentially new insights and avenues on combining differential privacy with other effective dimension reduction techniques and secure multiparty computing to clearly define various privacy models.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

Developing classification algorithms that are fair with respect to sensitive attributes of the data has become an important problem due to the growing deployment of classification algorithms in various social contexts. Several recent works have focused on fairness with respect to a specific metric, modeled the corresponding fair classification problem as a constrained optimization problem, and developed tailored algorithms to solve them. Despite this, there still remain important metrics for which we do not have fair classifiers and many of the aforementioned algorithms do not come with theoretical guarantees; perhaps because the resulting optimization problem is non-convex. The main contribution of this paper is a new meta-algorithm for classification that takes as input a large class of fairness constraints, with respect to multiple non-disjoint sensitive attributes, and which comes with provable guarantees. This is achieved by first developing a meta-algorithm for a large family of classification problems with convex constraints, and then showing that classification problems with general types of fairness constraints can be reduced to those in this family. We present empirical results that show that our algorithm can achieve near-perfect fairness with respect to various fairness metrics, and that the loss in accuracy due to the imposed fairness constraints is often small. Overall, this work unifies several prior works on fair classification, presents a practical algorithm with theoretical guarantees, and can handle fairness metrics that were previously not possible.

北京阿比特科技有限公司