This paper presents a wireless data collection framework that employs an unmanned aerial vehicle (UAV) to efficiently gather data from distributed IoT sensors deployed in a large area. Our approach takes into account the non-zero communication ranges of the sensors to optimize the flight path of the UAV, resulting in a variation of the Traveling Salesman Problem (TSP). We prove mathematically that the optimal waypoints for this TSP-variant problem are restricted to the boundaries of the sensor communication ranges, greatly reducing the solution space. Building on this finding, we develop a low-complexity UAV-assisted sensor data collection algorithm, and demonstrate its effectiveness in a selected use case where we minimize the total energy consumption of the UAV and sensors by jointly optimizing the UAV's travel distance and the sensors' communication ranges.
Volcanic eruptions emit ash that can be harmful to human health and cause damage to infrastructure, economic activities and the environment. The delimitation of ash clouds allows to know their behavior and dispersion, which helps in the prevention and mitigation of this phenomenon. Traditional methods take advantage of specialized software programs to process the bands or channels that compose the satellite images. However, their use is limited to experts and demands a lot of time and significant computational resources. In recent years, Artificial Intelligence has been a milestone in the computational treatment of complex problems in different areas. In particular, Deep Learning techniques allow automatic, fast and accurate processing of digital images. The present work proposes the use of the Pix2Pix model, a type of generative adversarial network that, once trained, learns the mapping of input images to output images. The architecture of such a network consisting of a generator and a discriminator provides the versatility needed to produce black and white ash cloud images from multispectral satellite images. The evaluation of the model, based on loss and accuracy plots, a confusion matrix, and visual inspection, indicates a satisfactory solution for accurate ash cloud delineation, applicable in any area of the world and becomes a useful tool in risk management.
Video stabilization refers to the problem of transforming a shaky video into a visually pleasing one. The question of how to strike a good trade-off between visual quality and computational speed has remained one of the open challenges in video stabilization. Inspired by the analogy between wobbly frames and jigsaw puzzles, we propose an iterative optimization-based learning approach using synthetic datasets for video stabilization, which consists of two interacting submodules: motion trajectory smoothing and full-frame outpainting. First, we develop a two-level (coarse-to-fine) stabilizing algorithm based on the probabilistic flow field. The confidence map associated with the estimated optical flow is exploited to guide the search for shared regions through backpropagation. Second, we take a divide-and-conquer approach and propose a novel multiframe fusion strategy to render full-frame stabilized views. An important new insight brought about by our iterative optimization approach is that the target video can be interpreted as the fixed point of nonlinear mapping for video stabilization. We formulate video stabilization as a problem of minimizing the amount of jerkiness in motion trajectories, which guarantees convergence with the help of fixed-point theory. Extensive experimental results are reported to demonstrate the superiority of the proposed approach in terms of computational speed and visual quality. The code will be available on GitHub.
In dynamic Magnetic Resonance Imaging (MRI), k-space is typically undersampled due to limited scan time, resulting in aliasing artifacts in the image domain. Hence, dynamic MR reconstruction requires not only modeling spatial frequency components in the x and y directions of k-space but also considering temporal redundancy. Most previous works rely on image-domain regularizers (priors) to conduct MR reconstruction. In contrast, we focus on interpolating the undersampled k-space before obtaining images with Fourier transform. In this work, we connect masked image modeling with k-space interpolation and propose a novel Transformer-based k-space Global Interpolation Network, termed k-GIN. Our k-GIN learns global dependencies among low- and high-frequency components of 2D+t k-space and uses it to interpolate unsampled data. Further, we propose a novel k-space Iterative Refinement Module (k-IRM) to enhance the high-frequency components learning. We evaluate our approach on 92 in-house 2D+t cardiac MR subjects and compare it to MR reconstruction methods with image-domain regularizers. Experiments show that our proposed k-space interpolation method quantitatively and qualitatively outperforms baseline methods. Importantly, the proposed approach achieves substantially higher robustness and generalizability in cases of highly-undersampled MR data.
This paper is concerned with the issue of improving video subscribers' quality of experience (QoE) by deploying a multi-unmanned aerial vehicle (UAV) network. Different from existing works, we characterize subscribers' QoE by video bitrates, latency, and frame freezing and propose to improve their QoE by energy-efficiently and dynamically optimizing the multi-UAV network in terms of serving UAV selection, UAV trajectory, and UAV transmit power. The dynamic multi-UAV network optimization problem is formulated as a challenging sequential-decision problem with the goal of maximizing subscribers' QoE while minimizing the total network power consumption, subject to some physical resource constraints. We propose a novel network optimization algorithm to solve this challenging problem, in which a Lyapunov technique is first explored to decompose the sequential-decision problem into several repeatedly optimized sub-problems to avoid the curse of dimensionality. To solve the sub-problems, iterative and approximate optimization mechanisms with provable performance guarantees are then developed. Finally, we design extensive simulations to verify the effectiveness of the proposed algorithm. Simulation results show that the proposed algorithm can effectively improve the QoE of subscribers and is 66.75\% more energy-efficient than benchmarks.
In this paper, we simultaneously tackle the problem of energy optimal and safe navigation of electric vehicles in a data-driven robust optimization framework. We consider a dynamic model of the electric vehicle which includes kinematic variables in both inertial and body coordinate systems in order to capture both longitudinal and lateral motion as well as state-of-energy of the battery. We leverage past data of obstacle motion to construct a future occupancy set with probabilistic guarantees, and formulate robust collision avoidance constraints with respect to such an occupancy set using convex programming duality. Consequently, we present the finite horizon optimal control problem subject to robust collision avoidance constraints while penalizing resulting energy consumption. Finally, we show the effectiveness of the proposed approach in reducing energy consumption and ensuring safe navigation via extensive simulations involving curved roads and multiple obstacles.
The Quadratic Assignment Problem (QAP) is an important combinatorial optimization problem with applications in many areas including logistics and manufacturing. QAP is known to be NP-hard, a computationally challenging problem, which requires the use of sophisticated heuristics in finding acceptable solutions for most real-world data sets. In this paper, we present GPU-accelerated implementations of a 2opt and a tabu search algorithm for solving the QAP. For both algorithms, we extract parallelism at multiple levels and implement novel code optimization techniques that fully utilize the GPU hardware. On a series of experiments on the well-known QAPLIB data sets, our solutions, on average run an order-of-magnitude faster than previous implementations and deliver up to a factor of 63 speedup on specific instances. The quality of the solutions produced by our implementations of 2opt and tabu is within 1.03% and 0.15% of the best known values. The experimental results also provide key insight into the performance characteristics of accelerated QAP solvers. In particular, the results reveal that both algorithmic choice and the shape of the input data sets are key factors in finding efficient implementations.
Cloud computing has become a critical infrastructure for modern society, like electric power grids and roads. As the backbone of the modern economy, it offers subscription-based computing services anytime, anywhere, on a pay-as-you-go basis. Its use is growing exponentially with the continued development of new classes of applications driven by a huge number of emerging networked devices. However, the success of Cloud computing has created a new global energy challenge, as it comes at the cost of vast energy usage. Currently, data centres hosting Cloud services world-wide consume more energy than most countries. Globally, by 2025, they are projected to consume 20% of global electricity and emit up to 5.5% of the world's carbon emissions. In addition, a significant part of the energy consumed is transformed into heat which leads to operational problems, including a reduction in system reliability and the life expectancy of devices, and escalation in cooling requirements. Therefore, for future generations of Cloud computing to address the environmental and operational consequences of such significant energy usage, they must become energy-efficient and environmentally sustainable while continuing to deliver high-quality services. In this paper, we propose a vision for learning-centric approach for the integrated management of new generation Cloud computing environments to reduce their energy consumption and carbon footprint while delivering service quality guarantees. In this paper, we identify the dimensions and key issues of integrated resource management and our envisioned approaches to address them. We present a conceptual architecture for energy-efficient new generation Clouds and early results on the integrated management of resources and workloads that evidence its potential benefits towards energy efficiency and sustainability.
This work proposes novel techniques for the efficient numerical simulation of parameterized, unsteady partial differential equations. Projection-based reduced order models (ROMs) such as the reduced basis method employ a (Petrov-)Galerkin projection onto a linear low-dimensional subspace. In unsteady applications, space-time reduced basis (ST-RB) methods have been developed to achieve a dimension reduction both in space and time, eliminating the computational burden of time marching schemes. However, nonaffine parameterizations dilute any computational speedup achievable by traditional ROMs. Computational efficiency can be recovered by linearizing the nonaffine operators via hyper-reduction, such as the empirical interpolation method in matrix form. In this work, we implement new hyper-reduction techniques explicitly tailored to deal with unsteady problems and embed them in a ST-RB framework. For each of the proposed methods, we develop a posteriori error bounds. We run numerical tests to compare the performance of the proposed ROMs against high-fidelity simulations, in which we combine the finite element method for space discretization on 3D geometries and the Backward Euler time integrator. In particular, we consider a heat equation and an unsteady Stokes equation. The numerical experiments demonstrate the accuracy and computational efficiency our methods retain with respect to the high-fidelity simulations.
Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.