We show that the sum of a sequence of integers can be computed in linear time on a Turing machine. In particular, the most obvious algorithm for this problem, which appears to require quadratic time due to carry propagation, actually runs in linear time by amortized analysis.
The topological (resp. geodesic) complexity of a topological (resp. metric) space is roughly the smallest number of continuous rules required to choose paths (resp. shortest paths) between any points of the space. We prove that the geodesic complexity of a cube exceeds its topological complexity by exactly 2. The proof involves a careful analysis of cut loci of the cube.
In this study, we consider a class of non-autonomous time-fractional partial advection-diffusion-reaction (TF-ADR) equations with Caputo type fractional derivative. To obtain the numerical solution of the model problem, we apply the non-symmetric interior penalty Galerkin (NIPG) method in space on a uniform mesh and the L1-scheme in time on a graded mesh. It is demonstrated that the computed solution is discretely stable. Superconvergence of error estimates for the proposed method are obtained using the discrete energy-norm. Also, we have applied the proposed method to solve semilinear problems after linearizing by the Newton linearization process. The theoretical results are verified through numerical experiments.
Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo method that allows to sample high dimensional probability measures. It relies on the integration of the Hamiltonian dynamics to propose a move which is then accepted or rejected thanks to a Metropolis procedure. Unbiased sampling is guaranteed by the preservation by the numerical integrators of two key properties of the Hamiltonian dynamics: volume-preservation and reversibility up to momentum reversal. For separable Hamiltonian functions, some standard explicit numerical schemes, such as the St\"ormer-Verlet integrator, satisfy these properties. However, for numerical or physical reasons, one may consider a Hamiltonian function which is nonseparable, in which case the standard numerical schemes which preserve the volume and satisfy reversibility up to momentum reversal are implicit. When implemented in practice, such implicit schemes may admit many solutions or none, especially when the timestep is too large. We show here how to enforce the numerical reversibility, and thus unbiasedness, of HMC schemes in this context by introducing a reversibility check. In addition, for some specific forms of the Hamiltonian function, we discuss the consistency of these HMC schemes with some Langevin dynamics, and show in particular that our algorithm yields an efficient discretization of the metropolized overdamped Langevin dynamics with position-dependent diffusion coefficients. Numerical results illustrate the relevance of the reversibility check on simple problems.
Graph burning is a graph process that models the spread of social contagion. Initially, all the vertices of a graph G are unburnt. At each step, an unburnt vertex is put on fire and the fire from burnt vertices of the previous step spreads to their adjacent unburnt vertices. This process continues till all vertices are burnt. The burning number $b(G)$ of the graph $G$ is the minimum number of steps required to burn all the vertices in the graph. The burning number conjecture by Bonato et al. states that for a connected graph G of order n, its burning number $b(G) \leq \lceil \sqrt{n} \rceil$. It is easy to observe that in order to burn a graph it is enough to burn its spanning tree. Hence it suffices to prove that for any tree T of order n, its burning number $b(T) \leq \lceil \sqrt{n} \rceil$ where $T$ is the spanning tree of $G$. It was proved in 2018 that $b(T) \leq \lceil \sqrt{n + n_2 + 1/4} +1/2 \rceil$ for a tree $T$ where $n_2$ is the number of degree $2$ vertices in $T$. In this article, we give an algorithm to burn a tree and we improve the existing bound using this algorithm. We prove that $b(T)\leq \lceil \sqrt{n + n_2 + 8}\rceil -1$ which is an improved bound. Also, under certain restriction of degree $2$ vertices, we have improved upon the result of Bonato et al.(in 2021). We also provide an algorithm to burn a binary tree and prove the burning number conjecture for the same.
This paper addresses the problem of providing robust estimators under a functional logistic regression model. Logistic regression is a popular tool in classification problems with two populations. As in functional linear regression, regularization tools are needed to compute estimators for the functional slope. The traditional methods are based on dimension reduction or penalization combined with maximum likelihood or quasi--likelihood techniques and for that reason, they may be affected by misclassified points especially if they are associated to functional covariates with atypical behaviour. The proposal given in this paper adapts some of the best practices used when the covariates are finite--dimensional to provide reliable estimations. Under regularity conditions, consistency of the resulting estimators and rates of convergence for the predictions are derived. A numerical study illustrates the finite sample performance of the proposed method and reveals its stability under different contamination scenarios. A real data example is also presented.
The power of Clifford or, geometric, algebra lies in its ability to represent geometric operations in a concise and elegant manner. Clifford algebras provide the natural generalizations of complex, dual numbers and quaternions into non-commutative multivectors. The paper demonstrates an algorithm for the computation of inverses of such numbers in a non-degenerate Clifford algebra of an arbitrary dimension. The algorithm is a variation of the Faddeev-LeVerrier-Souriau algorithm and is implemented in the open-source Computer Algebra System Maxima. Symbolic and numerical examples in different Clifford algebras are presented.
In multi-objective optimization, a single decision vector must balance the trade-offs between many objectives. Solutions achieving an optimal trade-off are said to be Pareto optimal: these are decision vectors for which improving any one objective must come at a cost to another. But as the set of Pareto optimal vectors can be very large, we further consider a more practically significant Pareto-constrained optimization problem, where the goal is to optimize a preference function constrained to the Pareto set. We investigate local methods for solving this constrained optimization problem, which poses significant challenges because the constraint set is (i) implicitly defined, and (ii) generally non-convex and non-smooth, even when the objectives are. We define notions of optimality and stationarity, and provide an algorithm with a last-iterate convergence rate of $O(K^{-1/2})$ to stationarity when the objectives are strongly convex and Lipschitz smooth.
In recent years, the concept of introducing physics to machine learning has become widely popular. Most physics-inclusive ML-techniques however are still limited to a single geometry or a set of parametrizable geometries. Thus, there remains the need to train a new model for a new geometry, even if it is only slightly modified. With this work we introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization. This technique is based on a combination of a U-Net-like CNN and well established discretization methods from the field of the finite difference method.The results of our physics-aware CNN are compared to a state-of-the-art data-based approach. Additionally, it is also shown how our approach performs when combined with the data-based approach.
A lattice of integers is the collection of all linear combinations of a set of vectors for which all entries of the vectors are integers and all coefficients in the linear combinations are also integers. Lattice reduction refers to the problem of finding a set of vectors in a given lattice such that the collection of all integer linear combinations of this subset is still the entire original lattice and so that the Euclidean norms of the subset are reduced. The present paper proposes simple, efficient iterations for lattice reduction which are guaranteed to reduce the Euclidean norms of the basis vectors (the vectors in the subset) monotonically during every iteration. Each iteration selects the basis vector for which projecting off (with integer coefficients) the components of the other basis vectors along the selected vector minimizes the Euclidean norms of the reduced basis vectors. Each iteration projects off the components along the selected basis vector and efficiently updates all information required for the next iteration to select its best basis vector and perform the associated projections.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.