In this paper, we present a contraction-guided adaptive partitioning algorithm for improving interval-valued robust reachable set estimates in a nonlinear feedback loop with a neural network controller and disturbances. Based on an estimate of the contraction rate of over-approximated intervals, the algorithm chooses when and where to partition. Then, by leveraging a decoupling of the neural network verification step and reachability partitioning layers, the algorithm can provide accuracy improvements for little computational cost. This approach is applicable with any sufficiently accurate open-loop interval-valued reachability estimation technique and any method for bounding the input-output behavior of a neural network. Using contraction-based robustness analysis, we provide guarantees of the algorithm's performance with mixed monotone reachability. Finally, we demonstrate the algorithm's performance through several numerical simulations and compare it with existing methods in the literature. In particular, we report a sizable improvement in the accuracy of reachable set estimation in a fraction of the runtime as compared to state-of-the-art methods.
Echo State Networks (ESN) are a type of Recurrent Neural Network that yields promising results in representing time series and nonlinear dynamic systems. Although they are equipped with a very efficient training procedure, Reservoir Computing strategies, such as the ESN, require high-order networks, i.e., many neurons, resulting in a large number of states that are magnitudes higher than the number of model inputs and outputs. A large number of states not only makes the time-step computation more costly but also may pose robustness issues, especially when applying ESNs to problems such as Model Predictive Control (MPC) and other optimal control problems. One way to circumvent this complexity issue is through Model Order Reduction strategies such as the Proper Orthogonal Decomposition (POD) and its variants (POD-DEIM), whereby we find an equivalent lower order representation to an already trained high dimension ESN. To this end, this work aims to investigate and analyze the performance of POD methods in Echo State Networks, evaluating their effectiveness through the Memory Capacity (MC) of the POD-reduced network compared to the original (full-order) ESN. We also perform experiments on two numerical case studies: a NARMA10 difference equation and an oil platform containing two wells and one riser. The results show that there is little loss of performance comparing the original ESN to a POD-reduced counterpart and that the performance of a POD-reduced ESN tends to be superior to a normal ESN of the same size. Also, the POD-reduced network achieves speedups of around $80\%$ compared to the original ESN.
We investigate swarms of autonomous mobile robots in the Euclidean plane. Each robot has a target function to determine a destination point from the robots' positions. All robots in a swarm conventionally take the same target function. We allow the robots in a swarm to take different target functions, and investigate the effects of the number of distinct target functions on the problem-solving ability. Specifically, we are interested in how many distinct target functions are necessary and sufficient to solve some known problems which are not solvable when all robots take the same target function, regarding target function as a resource to solve a problem, like time and message. The number of distinct target functions necessary and sufficient to solve a problem $\Pi$ is called the minimum algorithm size (MAS) for $\Pi$. (The MAS is $\infty$, if $\Pi$ is not solvable even for the robots with unique target functions.) We establish the MASs for solving the gathering and related problems from any initial configuration, i.e., in a self-stabilizing manner. Our results include: There is a family of the scattering problems $c$SCT $(1 \leq c \leq n)$ such that the MAS for the $c$SCAT is $c$, where $n$ is the size of the swarm. The MAS for the gathering problem is 2. It is 3, for the problem of gathering all non-faulty robots at a single point, regardless of the number $(< n)$ of crash failures. It is however $\infty$, for the problem of gathering all robots at a single point, in the presence of at most one crash failure.
Multi-robot motion planning (MRMP) is the problem of finding collision-free paths for a set of robots in a continuous state space. The difficulty of MRMP increases with the number of robots and is exacerbated in environments with narrow passages that robots must pass through, like warehouse aisles where coordination between robots is required. In single-robot settings, topology-guided motion planning methods have shown improved performance in these constricted environments. In this work, we extend an existing topology-guided single-robot motion planning method to the multi-robot domain to leverage the improved efficiency provided by topological guidance. We demonstrate our method's ability to efficiently plan paths in complex environments with many narrow passages, scaling to robot teams of size up to 25 times larger than existing methods in this class of problems. By leveraging knowledge of the topology of the environment, we also find higher-quality solutions than other methods.
Dynamic Movement Primitives (DMP) have found remarkable applicability and success in various robotic tasks, which can be mainly attributed to their generalization, modulation and robustness properties. Nevertheless, the spatial generalization of DMP can be problematic in some cases, leading to excessive or unnatural spatial scaling. Moreover, incorporating intermediate points (via-points) to adjust the DMP trajectory, is not adequately addressed. In this work we propose an improved online spatial generalization, that remedies the shortcomings of the classical DMP generalization, and moreover allows the incorporation of dynamic via-points. This is achieved by designing an online adaptation scheme for the DMP weights which is proved to minimize the distance from the demonstrated acceleration profile in order to retain the shape of the demonstration, subject to dynamic via-point and initial/final state constraints. Extensive comparative simulations with the classical and other DMP variants are conducted, while experimental results validate the applicability and efficacy of the proposed method.
Supervised learning in Deep Neural Networks (DNNs) is commonly performed using the error Backpropagation (BP) algorithm. The sequential propagation of errors and the transport of weights during the backward pass limits its efficiency and scalability. Therefore, there is growing interest in finding local alternatives to BP. Recently, methods based on Forward-Mode Automatic Differentiation have been proposed, such as the Forward Gradient algorithm and its variants. However, Forward Gradients suffer from high variance in large DNNs, which affects convergence. In this paper, we address the large variance of Forward Gradients and propose the Forward Direct Feedback Alignment (FDFA) algorithm that combines Activity-Perturbed Forward Gradients with Direct Feedback Alignment and momentum to compute low-variance gradient estimates in DNNs. Our results provides both theoretical proof and empirical evidence that our proposed method achieves lower variance compared to previous Forward Gradient techniques. By reducing the variance of gradient estimates, our approach enables faster convergence and better performance when compared to other local alternatives to backpropagation.
When dealing with electro or magnetoencephalography records, many supervised prediction tasks are solved by working with covariance matrices to summarize the signals. Learning with these matrices requires using Riemanian geometry to account for their structure. In this paper, we propose a new method to deal with distributions of covariance matrices and demonstrate its computational efficiency on M/EEG multivariate time series. More specifically, we define a Sliced-Wasserstein distance between measures of symmetric positive definite matrices that comes with strong theoretical guarantees. Then, we take advantage of its properties and kernel methods to apply this distance to brain-age prediction from MEG data and compare it to state-of-the-art algorithms based on Riemannian geometry. Finally, we show that it is an efficient surrogate to the Wasserstein distance in domain adaptation for Brain Computer Interface applications.
Recent years have seen increasing employment of decision intelligence in electronic design automation (EDA), which aims to reduce the manual efforts and boost the design closure process in modern toolflows. However, existing approaches either require a large number of labeled data and expensive training efforts, or are limited in practical EDA toolflow integration due to computation overhead. This paper presents a generic end-to-end sequential decision making framework FlowTune for synthesis tooflow optimization, with a novel high-performance domain-specific, multi-stage multi-armed bandit (MAB) approach. This framework addresses optimization problems on Boolean optimization problems such as a) And-Inv-Graphs (# nodes), b) Conjunction Normal Form (CNF) minimization (# clauses) for Boolean Satisfiability; logic synthesis and technology mapping problems such as c) post static timing analysis (STA) delay and area optimization for standard-cell technology mapping, and d) FPGA technology mapping for 6-in LUT architectures. Moreover, we demonstrate the high extnsibility and generalizability of the proposed domain-specific MAB approach with end-to-end FPGA design flow, evaluated at post-routing stage, with two different FPGA backend tools (OpenFPGA and VPR) and two different logic synthesis representations (AIGs and MIGs). FlowTune is fully integrated with ABC [1], Yosys [2], VTR [3], LSOracle [4], OpenFPGA [5], and industrial tools, and is released publicly. The experimental results conducted on various design stages in the flow all demonstrate that our framework outperforms both hand-crafted flows [1] and ML explored flows [6], [7] in quality of results, and is orders of magnitude faster compared to ML-based approaches.
This work presents an approach for automating the discretization and approximation procedures in constructing digital representations of composites from Micro-CT images featuring intricate microstructures. The proposed method is guided by the Support Vector Machine (SVM) classification, offering an effective approach for discretizing microstructural images. An SVM soft margin training process is introduced as a classification of heterogeneous material points, and image segmentation is accomplished by identifying support vectors through a local regularized optimization problem. In addition, an Interface-Modified Reproducing Kernel Particle Method (IM-RKPM) is proposed for appropriate approximations of weak discontinuities across material interfaces. The proposed method modifies the smooth kernel functions with a regularized heavy-side function concerning the material interfaces to alleviate Gibb's oscillations. This IM-RKPM is formulated without introducing duplicated degrees of freedom associated with the interface nodes commonly needed in the conventional treatments of weak discontinuities in the meshfree methods. Moreover, IM-RKPM can be implemented with various domain integration techniques, such as Stabilized Conforming Nodal Integration (SCNI). The extension of the proposed method to 3-dimension is straightforward, and the effectiveness of the proposed method is validated through the image-based modeling of polymer-ceramic composite microstructures.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.