Using oblique projections and angles between subspaces we write condition number estimates for abstract nonsymmetric domain decomposition methods. In particular, we consider a restricted additive method for the Poisson equation and write a bound for the condition number of the preconditioned operator. We also obtain the non-negativity of the preconditioned operator. Condition number estimates are not enough for the convergence of iterative methods such as GMRES but these bounds may lead to further understanding of nonsymmetric domain decomposition methods.
Tensor parameters that are amortized or regularized over large tensor powers, often called "asymptotic" tensor parameters, play a central role in several areas including algebraic complexity theory (constructing fast matrix multiplication algorithms), quantum information (entanglement cost and distillable entanglement), and additive combinatorics (bounds on cap sets, sunflower-free sets, etc.). Examples are the asymptotic tensor rank, asymptotic slice rank and asymptotic subrank. Recent works (Costa-Dalai, Blatter-Draisma-Rupniewski, Christandl-Gesmundo-Zuiddam) have investigated notions of discreteness (no accumulation points) or "gaps" in the values of such tensor parameters. We prove a general discreteness theorem for asymptotic tensor parameters of order-three tensors and use this to prove that (1) over any finite field, the asymptotic subrank and the asymptotic slice rank have no accumulation points, and (2) over the complex numbers, the asymptotic slice rank has no accumulation points. Central to our approach are two new general lower bounds on the asymptotic subrank of tensors, which measures how much a tensor can be diagonalized. The first lower bound says that the asymptotic subrank of any concise three-tensor is at least the cube-root of the smallest dimension. The second lower bound says that any three-tensor that is "narrow enough" (has one dimension much smaller than the other two) has maximal asymptotic subrank. Our proofs rely on new lower bounds on the maximum rank in matrix subspaces that are obtained by slicing a three-tensor in the three different directions. We prove that for any concise tensor the product of any two such maximum ranks must be large, and as a consequence there are always two distinct directions with large max-rank.
We introduce a new overlapping Domain Decomposition Method (DDM) to solve the fully nonlinear Monge-Amp\`ere equation. While DDMs have been extensively studied for linear problems, their application to fully nonlinear partial differential equations (PDE) remains limited in the literature. To address this gap, we establish a proof of global convergence of these new iterative algorithms using a discrete comparison principle argument. Several numerical tests are performed to validate the convergence theorem. These numerical experiments involve examples of varying regularity. Computational experiments show that method is efficient, robust, and requires relatively few iterations to converge. The results reveal great potential for DDM methods to lead to highly efficient and parallelizable solvers for large-scale problems that are computationally intractable using existing solution methods.
We investigate error bounds for numerical solutions of divergence structure linear elliptic PDEs on compact manifolds without boundary. Our focus is on a class of monotone finite difference approximations, which provide a strong form of stability that guarantees the existence of a bounded solution. In many settings including the Dirichlet problem, it is easy to show that the resulting solution error is proportional to the formal consistency error of the scheme. We make the surprising observation that this need not be true for PDEs posed on compact manifolds without boundary. We propose a particular class of approximation schemes built around an underlying monotone scheme with consistency error $O(h^\alpha)$. By carefully constructing barrier functions, we prove that the solution error is bounded by $O(h^{\alpha/(d+1)})$ in dimension $d$. We also provide a specific example where this predicted convergence rate is observed numerically. Using these error bounds, we further design a family of provably convergent approximations to the solution gradient.
Prior work typically describes out-of-domain (OOD) or out-of-distribution (OODist) samples as those that originate from dataset(s) or source(s) different from the training set but for the same task. When compared to in-domain (ID) samples, the models have been known to usually perform poorer on OOD samples, although this observation is not consistent. Another thread of research has focused on OOD detection, albeit mostly using supervised approaches. In this work, we first consolidate and present a systematic analysis of multiple definitions of OOD and OODist as discussed in prior literature. Then, we analyze the performance of a model under ID and OOD/OODist settings in a principled way. Finally, we seek to identify an unsupervised method for reliably identifying OOD/OODist samples without using a trained model. The results of our extensive evaluation using 12 datasets from 4 different tasks suggest the promising potential of unsupervised metrics in this task.
We consider the problem of binary string reconstruction from the multiset of its substring compositions, i.e., referred to as the substring composition multiset, first introduced and studied by Acharya et al. We introduce a new algorithm for the problem of string reconstruction from its substring composition multiset which relies on the algebraic properties of the equivalent bivariate polynomial formulation of the problem. We then characterize specific algebraic conditions for the binary string to be reconstructed that guarantee the algorithm does not require any backtracking through the reconstruction, and, consequently, the time complexity is bounded polynomially. More specifically, in the case of no backtracking, our algorithm has a time complexity of $O(n^2)$ compared to the algorithm by Acharya et al., which has a time complexity of $O(n^2\log(n))$, where $n$ is the length of the binary string. Furthermore, it is shown that larger sets of binary strings are uniquely reconstructable by the new algorithm and without the need for backtracking leading to codebooks of reconstruction codes that are larger, by a linear factor in size, compared to the previously known construction by Pattabiraman et al., while having $O(n^2)$ reconstruction complexity.
We consider gradient-related methods for low-rank matrix optimization with a smooth cost function. The methods operate on single factors of the low-rank factorization and share aspects of both alternating and Riemannian optimization. Two possible choices for the search directions based on Gauss-Southwell type selection rules are compared: one using the gradient of a factorized non-convex formulation, the other using the Riemannian gradient. While both methods provide gradient convergence guarantees that are similar to the unconstrained case, the version based on Riemannian gradient is significantly more robust with respect to small singular values and the condition number of the cost function, as illustrated by numerical experiments. As a side result of our approach, we also obtain new convergence results for the alternating least squares method.
Nonlocal models allow for the description of phenomena which cannot be captured by classical partial differential equations. The availability of efficient solvers is one of the main concerns for the use of nonlocal models in real world engineering applications. We present a domain decomposition solver that is inspired by substructuring methods for classical local equations. In numerical experiments involving finite element discretizations of scalar and vectorial nonlocal equations of integrable and fractional type, we observe improvements in solution time of up to 14.6x compared to commonly used solver strategies.
Comparing probability distributions is at the crux of many machine learning algorithms. Maximum Mean Discrepancies (MMD) and Wasserstein distances are two classes of distances between probability distributions that have attracted abundant attention in past years. This paper establishes some conditions under which the Wasserstein distance can be controlled by MMD norms. Our work is motivated by the compressive statistical learning (CSL) theory, a general framework for resource-efficient large scale learning in which the training data is summarized in a single vector (called sketch) that captures the information relevant to the considered learning task. Inspired by existing results in CSL, we introduce the H\"older Lower Restricted Isometric Property and show that this property comes with interesting guarantees for compressive statistical learning. Based on the relations between the MMD and the Wasserstein distances, we provide guarantees for compressive statistical learning by introducing and studying the concept of Wasserstein regularity of the learning task, that is when some task-specific metric between probability distributions can be bounded by a Wasserstein distance.
Given $n$ samples of a function $f\colon D\to\mathbb C$ in random points drawn with respect to a measure $\varrho_S$ we develop theoretical analysis of the $L_2(D, \varrho_T)$-approximation error. For a parituclar choice of $\varrho_S$ depending on $\varrho_T$, it is known that the weighted least squares method from finite dimensional function spaces $V_m$, $\dim(V_m) = m < \infty$ has the same error as the best approximation in $V_m$ up to a multiplicative constant when given exact samples with logarithmic oversampling. If the source measure $\varrho_S$ and the target measure $\varrho_T$ differ we are in the domain adaptation setting, a subfield of transfer learning. We model the resulting deterioration of the error in our bounds. Further, for noisy samples, our bounds describe the bias-variance trade off depending on the dimension $m$ of the approximation space $V_m$. All results hold with high probability. For demonstration, we consider functions defined on the $d$-dimensional cube given in unifom random samples. We analyze polynomials, the half-period cosine, and a bounded orthonormal basis of the non-periodic Sobolev space $H_{\mathrm{mix}}^2$. Overcoming numerical issues of this $H_{\text{mix}}^2$ basis, this gives a novel stable approximation method with quadratic error decay. Numerical experiments indicate the applicability of our results.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.