亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While a Quantum Approximate Optimization Algorithm (QAOA) is intended to provide a quantum advantage in finding approximate solutions to combinatorial optimization problems, noise in the system is a hurdle in exploiting its full potential. Several error mitigation techniques have been studied to lessen the effect of noise on this algorithm. Recently, Majumdar et al. proposed a Depth First Search (DFS) based method to reduce $n-1$ CNOT gates in the ansatz design of QAOA for finding Max-Cut in a graph G = (V, E), |V| = n. However, this method tends to increase the depth of the circuit, making it more prone to relaxation error. The depth of the circuit is proportional to the height of the DFS tree, which can be $n-1$ in the worst case. In this paper, we propose an $O(\Delta \cdot n^2)$ greedy heuristic algorithm, where $\Delta$ is the maximum degree of the graph, that finds a spanning tree of lower height, thus reducing the overall depth of the circuit while still retaining the $n-1$ reduction in the number of CNOT gates needed in the ansatz. We numerically show that this algorithm achieves nearly 10 times increase in the probability of success for each iteration of QAOA for Max-Cut. We further show that although the average depth of the circuit produced by this heuristic algorithm still grows linearly with n, our algorithm reduces the slope of the linear increase from 1 to 0.11.

相關內容

The performance of Simultaneous Wireless Information and Power Transfer (SWIPT) is mainly constrained by the received Radio-Frequency (RF) signal strength. To tackle this problem, we introduce an Intelligent Reflecting Surface (IRS) to compensate the propagation loss and boost the transmission efficiency. This paper proposes a novel IRS-aided SWIPT system where a multi-carrier multi-antenna Access Point (AP) transmits information and power simultaneously, with the assist of an IRS, to a single-antenna User Equipment (UE) employing practical receiving schemes. Considering harvester nonlinearity, we characterize the achievable Rate-Energy (R-E) region through a joint optimization of waveform, active and passive beamforming based on the Channel State Information at the Transmitter (CSIT). This problem is solved by the Block Coordinate Descent (BCD) method, where we obtain the active precoder in closed form, the passive beamforming by the Successive Convex Approximation (SCA) approach, and the waveform amplitude by the Geometric Programming (GP) technique. To facilitate practical implementation, we also propose a low-complexity design based on closed-form adaptive waveform schemes. Simulation results demonstrate the proposed algorithms bring considerable R-E gains with robustness to CSIT inaccuracy and finite IRS states, and emphasize the importance of modeling harvester nonlinearity in the IRS-aided SWIPT design.

The human mental search (HMS) algorithm is a relatively recent population-based metaheuristic algorithm, which has shown competitive performance in solving complex optimisation problems. It is based on three main operators: mental search, grouping, and movement. In the original HMS algorithm, a clustering algorithm is used to group the current population in order to identify a promising region in search space, while candidate solutions then move towards the best candidate solution in the promising region. In this paper, we propose a novel HMS algorithm, HMS-OS, which is based on clustering in both objective and search space, where clustering in objective space finds a set of best candidate solutions whose centroid is then also used in updating the population. For further improvement, HMSOS benefits from an adaptive selection of the number of mental processes in the mental search operator. Experimental results on CEC-2017 benchmark functions with dimensionalities of 50 and 100, and in comparison to other optimisation algorithms, indicate that HMS-OS yields excellent performance, superior to those of other methods.

Unbiased and consistent variance estimators generally do not exist for design-based treatment effect estimators because experimenters never observe more than one potential outcome for any unit. The problem is exacerbated by interference and complex experimental designs. In this paper, we consider variance estimation for linear treatment effect estimators under interference and arbitrary experimental designs. Experimenters must accept conservative estimators in this setting, but they can strive to minimize the conservativeness. We show that this task can be interpreted as an optimization problem in which one aims to find the lowest estimable upper bound of the true variance given one's risk preference and knowledge of the potential outcomes. We characterize the set of admissible bounds in the class of quadratic forms, and we demonstrate that the optimization problem is a convex program for many natural objectives. This allows experimenters to construct less conservative variance estimators, making inferences about treatment effects more informative. The resulting estimators are guaranteed to be conservative regardless of whether the background knowledge used to construct the bound is correct, but the estimators are less conservative if the knowledge is reasonably accurate.

In the online (time-series) search problem, a player is presented with a sequence of prices which are revealed in an online manner. In the standard definition of the problem, for each revealed price, the player must decide irrevocably whether to accept or reject it, without knowledge of future prices (other than an upper and a lower bound on their extreme values), and the objective is to minimize the competitive ratio, namely the worst-case ratio between the maximum price in the sequence and the one selected by the player. The problem formulates several applications of decision-making in the face of uncertainty on the revealed samples. Previous work on this problem has largely assumed extreme scenarios in which either the player has almost no information about the input, or the player is provided with some powerful, and error-free advice. In this work, we study learning-augmented algorithms, in which there is a potentially erroneous prediction concerning the input. Specifically, we consider two different settings: the setting in which the prediction is related to the maximum price in the sequence, as well as the setting in which the prediction is obtained as a response to a number of binary queries. For both settings, we provide tight, or near-tight upper and lower bounds on the worst-case performance of search algorithms as a function of the prediction error. We also provide experimental results on data obtained from stock exchange markets that confirm the theoretical analysis, and explain how our techniques can be applicable to other learning-augmented applications.

Multi-hop logical reasoning is an established problem in the field of representation learning on knowledge graphs (KGs). It subsumes both one-hop link prediction as well as other more complex types of logical queries. Existing algorithms operate only on classical, triple-based graphs, whereas modern KGs often employ a hyper-relational modeling paradigm. In this paradigm, typed edges may have several key-value pairs known as qualifiers that provide fine-grained context for facts. In queries, this context modifies the meaning of relations, and usually reduces the answer set. Hyper-relational queries are often observed in real-world KG applications, and existing approaches for approximate query answering cannot make use of qualifier pairs. In this work, we bridge this gap and extend the multi-hop reasoning problem to hyper-relational KGs allowing to tackle this new type of complex queries. Building upon recent advancements in Graph Neural Networks and query embedding techniques, we study how to embed and answer hyper-relational conjunctive queries. Besides that, we propose a method to answer such queries and demonstrate in our experiments that qualifiers improve query answering on a diverse set of query patterns.

Knowledge graphs (KGs) are of great importance to many real world applications, but they generally suffer from incomplete information in the form of missing relations between entities. Knowledge graph completion (also known as relation prediction) is the task of inferring missing facts given existing ones. Most of the existing work is proposed by maximizing the likelihood of observed instance-level triples. Not much attention, however, is paid to the ontological information, such as type information of entities and relations. In this work, we propose a type-augmented relation prediction (TaRP) method, where we apply both the type information and instance-level information for relation prediction. In particular, type information and instance-level information are encoded as prior probabilities and likelihoods of relations respectively, and are combined by following Bayes' rule. Our proposed TaRP method achieves significantly better performance than state-of-the-art methods on three benchmark datasets: FB15K, YAGO26K-906, and DB111K-174. In addition, we show that TaRP achieves significantly improved data efficiency. More importantly, the type information extracted from a specific dataset can generalize well to other datasets through the proposed TaRP model.

Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.

Tensor factorization has become an increasingly popular approach to knowledge graph completion(KGC), which is the task of automatically predicting missing facts in a knowledge graph. However, even with a simple model like CANDECOMP/PARAFAC(CP) tensor decomposition, KGC on existing knowledge graphs is impractical in resource-limited environments, as a large amount of memory is required to store parameters represented as 32-bit or 64-bit floating point numbers. This limitation is expected to become more stringent as existing knowledge graphs, which are already huge, keep steadily growing in scale. To reduce the memory requirement, we present a method for binarizing the parameters of the CP tensor decomposition by introducing a quantization function to the optimization problem. This method replaces floating point-valued parameters with binary ones after training, which drastically reduces the model size at run time. We investigate the trade-off between the quality and size of tensor factorization models for several KGC benchmark datasets. In our experiments, the proposed method successfully reduced the model size by more than an order of magnitude while maintaining the task performance. Moreover, a fast score computation technique can be developed with bitwise operations.

Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.

We analyze the language learned by an agent trained with reinforcement learning as a component of the ActiveQA system [Buck et al., 2017]. In ActiveQA, question answering is framed as a reinforcement learning task in which an agent sits between the user and a black box question-answering system. The agent learns to reformulate the user's questions to elicit the optimal answers. It probes the system with many versions of a question that are generated via a sequence-to-sequence question reformulation model, then aggregates the returned evidence to find the best answer. This process is an instance of \emph{machine-machine} communication. The question reformulation model must adapt its language to increase the quality of the answers returned, matching the language of the question answering system. We find that the agent does not learn transformations that align with semantic intuitions but discovers through learning classical information retrieval techniques such as tf-idf re-weighting and stemming.

北京阿比特科技有限公司