亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider the one-bit precoding problem for the multiuser downlink massive multiple-input multiple-output (MIMO) system with phase shift keying (PSK) modulation. We focus on the celebrated constructive interference (CI)-based problem formulation. We first establish the NP-hardness of the problem (even in the single-user case), which reveals the intrinsic difficulty of globally solving the problem. Then, we propose a novel negative $\ell_1$ penalty model for the considered problem, which penalizes the one-bit constraint into the objective by a negative $\ell_1$-norm term, and show the equivalence between (global and local) solutions of the original problem and the penalty problem when the penalty parameter is sufficiently large. We further transform the penalty model into an equivalent min-max problem and propose an efficient alternating proximal/projection gradient descent ascent (APGDA) algorithm for solving it, which performs a proximal gradient decent over one block of variables and a projection gradient ascent over the other block of variables alternately. The APGDA algorithm enjoys a low per-iteration complexity and is guaranteed to converge to a stationary point of the min-max problem and a local minimizer of the penalty problem. To further reduce the computational cost, we also propose a low-complexity implementation of the APGDA algorithm, where the values of the variables will be fixed in later iterations once they satisfy the one-bit constraint. Numerical results show that, compared to the state-of-the-art CI-based algorithms, both of the proposed algorithms generally achieve better bit-error-rate (BER) performance with lower computational cost.

相關內容

In this paper, we study the shape reconstruction problem, when the shape we wish to reconstruct is an orientable smooth d-dimensional submanifold of the Euclidean space. Assuming we have as input a simplicial complex K that approximates the submanifold (such as the Cech complex or the Rips complex), we recast the problem of reconstucting the submanifold from K as a L1-norm minimization problem in which the optimization variable is a d-chain of K. Providing that K satisfies certain reasonable conditions, we prove that the considered minimization problem has a unique solution which triangulates the submanifold and coincides with the flat Delaunay complex introduced and studied in a companion paper. Since the objective is a weighted L1-norm and the contraints are linear, the triangulation process can thus be implemented by linear programming.

In this paper, we study the concurrent composition of interactive mechanisms with adaptively chosen privacy-loss parameters. In this setting, the adversary can interleave queries to existing interactive mechanisms, as well as create new ones. We prove that every valid privacy filter and odometer for noninteractive mechanisms extends to the concurrent composition of interactive mechanisms if privacy loss is measured using $(\epsilon, \delta)$-DP, $f$-DP, or R\'enyi DP of fixed order. Our results offer strong theoretical foundations for enabling full adaptivity in composing differentially private interactive mechanisms, showing that concurrency does not affect the privacy guarantees. We also provide an implementation for users to deploy in practice.

In this paper, we propose a source coding scheme that represents data from unknown distributions through frequency and support information. Existing encoding schemes often compress data by sacrificing computational efficiency or by assuming the data follows a known distribution. We take advantage of the structure that arises within the spatial representation and utilize it to encode run-lengths within this representation using Golomb coding. Through theoretical analysis, we show that our scheme yields an overall bit rate that nears entropy without a computationally complex encoding algorithm and verify these results through numerical experiments.

In this paper, we introduce and analyze a lowest-order locking-free weak Galerkin (WG) finite element scheme for the grad-div formulation of linear elasticity problems. The scheme uses linear functions in the interior of mesh elements and constants on edges (2D) or faces (3D), respectively, to approximate the displacement. An $H(div)$-conforming displacement reconstruction operator is employed to modify test functions in the right-hand side of the discrete form, in order to eliminate the dependence of the $Lam\acute{e}$ parameter $\lambda$ in error estimates, i.e., making the scheme locking-free. The method works without requiring $\lambda \|\nabla\cdot \mathbf{u}\|_1$ to be bounded. We prove optimal error estimates, independent of $\lambda$, in both the $H^1$-norm and the $L^2$-norm. Numerical experiments validate that the method is effective and locking-free.

In this paper, we focus on a scenario where a single image contains objects of the same category but varying sizes, and we propose a lightweight approach that can not only recognize their category labels but also their real sizes. Our approach utilizes commonsense knowledge to assist a deep neural network (DNN) based coarse-grained object detector to achieve accurate size-related fine-grained detection. Specifically, we introduce a commonsense knowledge inference module (CKIM) that maps the coarse-grained labels produced by the DL detector to size-related fine-grained labels. Experimental results demonstrate that our approach achieves accurate fine-grained detections with a reduced amount of annotated data, and smaller model size, compared with baseline methods. Our code is available at: //github.com/ZJLAB-AMMI/CKIM.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司