亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Acceptance testing is crucial to determine whether a system fulfills end-user requirements. However, the creation of acceptance tests is a laborious task entailing two major challenges: (1) practitioners need to determine the right set of test cases that fully covers a requirement, and (2) they need to create test cases manually due to insufficient tool support. Existing approaches for automatically deriving test cases require semi-formal or even formal notations of requirements, though unrestricted natural language is prevalent in practice. In this paper, we present our tool-supported approach CiRA (Conditionals in Requirements Artifacts) capable of creating the minimal set of required test cases from conditional statements in informal requirements. We demonstrate the feasibility of CiRA in a case study with three industry partners. In our study, out of 578 manually created test cases, 71.8 % can be generated automatically. Additionally, CiRA discovered 80 relevant test cases that were missed in manual test case design. CiRA is publicly available at www.cira.bth.se/demo/.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

Expert finding has been well-studied in community question answering (QA) systems in various domains. However, none of these studies addresses expert finding in the legal domain, where the goal is for citizens to find lawyers based on their expertise. In the legal domain, there is a large knowledge gap between the experts and the searchers, and the content on the legal QA websites consist of a combination formal and informal communication. In this paper, we propose methods for generating query-dependent textual profiles for lawyers covering several aspects including sentiment, comments, and recency. We combine query-dependent profiles with existing expert finding methods. Our experiments are conducted on a novel dataset gathered from an online legal QA service. We discovered that taking into account different lawyer profile aspects improves the best baseline model. We make our dataset publicly available for future work.

Formality is an important characteristic of text documents. The automatic detection of the formality level of a text is potentially beneficial for various natural language processing tasks, such as retrieval of texts with a desired formality level, integration in language learning and document editing platforms, or evaluating the desired conversation tone by chatbots. Recently two large-scale datasets were introduced for multiple languages featuring formality annotation. However, they were primarily used for the training of style transfer models. However, detection text formality on its own may also be a useful application. This work proposes the first systematic study of formality detection methods based on current (and more classic) machine learning methods and delivers the best-performing models for public usage. We conducted three types of experiments -- monolingual, multilingual, and cross-lingual. The study shows the overcome of BiLSTM-based models over transformer-based ones for the formality classification task. We release formality detection models for several languages yielding state of the art results and possessing tested cross-lingual capabilities.

Recruitment in large organisations often involves interviewing a large number of candidates. The process is resource intensive and complex. Therefore, it is important to carry it out efficiently and effectively. Planning the selection process consists of several problems, each of which maps to one or the other well-known computing problem. Research that looks at each of these problems in isolation is rich and mature. However, research that takes an integrated view of the problem is not common. In this paper, we take two of the most important aspects of the application processing problem, namely review/interview panel creation and interview scheduling. We have implemented our approach as a prototype system and have used it to automatically plan the interview process of a real-life data set. Our system provides a distinctly better plan than the existing practice, which is predominantly manual. We have explored various algorithmic options and have customised them to solve these panel creation and interview scheduling problems. We have evaluated these design options experimentally on a real data set and have presented our observations. Our prototype and experimental process and results may be a very good starting point for a full-fledged development project for automating application processing process.

In this study, we examine a clustering problem in which the covariates of each individual element in a dataset are associated with an uncertainty specific to that element. More specifically, we consider a clustering approach in which a pre-processing applying a non-linear transformation to the covariates is used to capture the hidden data structure. To this end, we approximate the sets representing the propagated uncertainty for the pre-processed features empirically. To exploit the empirical uncertainty sets, we propose a greedy and optimistic clustering (GOC) algorithm that finds better feature candidates over such sets, yielding more condensed clusters. As an important application, we apply the GOC algorithm to synthetic datasets of the orbital properties of stars generated through our numerical simulation mimicking the formation process of the Milky Way. The GOC algorithm demonstrates an improved performance in finding sibling stars originating from the same dwarf galaxy. These realistic datasets have also been made publicly available.

In recent years, there has been an increase in the number of devices with virtual assistants (e.g: Siri, Google Home, Alexa) in our living rooms and kitchens. As a result of this, these devices receive several queries about recipes. All these queries will contain terms relating to a "recipe-domain" i.e: they will contain dish-names, ingredients, cooking times, dietary preferences etc. Extracting these recipe-relevant aspects from the query thus becomes important when it comes to addressing the user's information need. Our project focuses on extracting ingredients from such plain-text user utterances. Our best performing model was a fine-tuned BERT which achieved an F1-score of $95.01$. We have released all our code in a GitHub repository.

We review the scholarly contributions that utilise Natural Language Processing (NLP) techniques to support the design process. Using a heuristic approach, we gathered 223 articles that are published in 32 journals within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research.

The dynamic response of the legged robot locomotion is non-Lipschitz and can be stochastic due to environmental uncertainties. To test, validate, and characterize the safety performance of legged robots, existing solutions on observed and inferred risk can be incomplete and sampling inefficient. Some formal verification methods suffer from the model precision and other surrogate assumptions. In this paper, we propose a scenario sampling based testing framework that characterizes the overall safety performance of a legged robot by specifying (i) where (in terms of a set of states) the robot is potentially safe, and (ii) how safe the robot is within the specified set. The framework can also help certify the commercial deployment of the legged robot in real-world environment along with human and compare safety performance among legged robots with different mechanical structures and dynamic properties. The proposed framework is further deployed to evaluate a group of state-of-the-art legged robot locomotion controllers from various model-based, deep neural network involved, and reinforcement learning based methods in the literature. Among a series of intended work domains of the studied legged robots (e.g. tracking speed on sloped surface, with abrupt changes on demanded velocity, and against adversarial push-over disturbances), we show that the method can adequately capture the overall safety characterization and the subtle performance insights. Many of the observed safety outcomes, to the best of our knowledge, have never been reported by the existing work in the legged robot literature.

Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives. In HCI, design optimization problems are often exceedingly complex, involving multiple objectives and expensive empirical evaluations. Model-based computational design algorithms assist designers by generating design examples during design, however they assume a model of the interaction domain. Black box methods for assistance, on the other hand, can work with any design problem. However, virtually all empirical studies of this human-in-the-loop approach have been carried out by either researchers or end-users. The question stands out if such methods can help designers in realistic tasks. In this paper, we study Bayesian optimization as an algorithmic method to guide the design optimization process. It operates by proposing to a designer which design candidate to try next, given previous observations. We report observations from a comparative study with 40 novice designers who were tasked to optimize a complex 3D touch interaction technique. The optimizer helped designers explore larger proportions of the design space and arrive at a better solution, however they reported lower agency and expressiveness. Designers guided by an optimizer reported lower mental effort but also felt less creative and less in charge of the progress. We conclude that human-in-the-loop optimization can support novice designers in cases where agency is not critical.

Although Transformers with fully connected self-attentions are powerful to model long-term dependencies, they are struggling to scale to long texts with thousands of words in language modeling. One of the solutions is to equip the model with a recurrence memory. However, existing approaches directly reuse hidden states from the previous segment that encodes contexts in a uni-directional way. As a result, this prohibits the memory to dynamically interact with the current context that provides up-to-date information for token prediction. To remedy this issue, we propose Look-Ahead Memory (LaMemo) that enhances the recurrence memory by incrementally attending to the right-side tokens, and interpolating with the old memory states to maintain long-term information in the history. LaMemo embraces bi-directional attention and segment recurrence with an additional computation overhead only linearly proportional to the memory length. Experiments on widely used language modeling benchmarks demonstrate its superiority over the baselines equipped with different types of memory.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

北京阿比特科技有限公司