亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we introduce a new approach to compute rigorously solutions of Cauchy problems for a class of semi-linear parabolic partial differential equations. Expanding solutions with Chebyshev series in time and Fourier series in space, we introduce a zero finding problem $F(a)=0$ on a Banach algebra $X$ of Fourier-Chebyshev sequences, whose solution solves the Cauchy problem. The challenge lies in the fact that the linear part $\mathcal{L} = DF(0)$ has an infinite block diagonal structure with blocks becoming less and less diagonal dominant at infinity. We introduce analytic estimates to show that $\mathcal{L}$ is an invertible linear operator on $X$, and we obtain explicit, rigorous and computable bounds for the operator norm $\| \mathcal{L}^{-1}\|_{B(X)}$. These bounds are then used to verify the hypotheses of a Newton-Kantorovich type argument which shows that the (Newton-like) operator $\mathcal{T}(a)=a - \mathcal{L}^{-1} F(a)$ is a contraction on a small ball centered at a numerical approximation of the Cauchy problem. The contraction mapping theorem yields a fixed point which corresponds to a classical (strong) solution of the Cauchy problem. The approach is simple to implement, numerically stable and is applicable to a class of PDE models, which include for instance Fisher's equation and the Swift-Hohenberg equation. We apply our approach to each of these models.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

We employ kernel-based approaches that use samples from a probability distribution to approximate a Kolmogorov operator on a manifold. The self-tuning variable-bandwidth kernel method [Berry & Harlim, Appl. Comput. Harmon. Anal., 40(1):68--96, 2016] computes a large, sparse matrix that approximates the differential operator. Here, we use the eigendecomposition of the discretization to (i) invert the operator, solving a differential equation, and (ii) represent gradient vector fields on the manifold. These methods only require samples from the underlying distribution and, therefore, can be applied in high dimensions or on geometrically complex manifolds when spatial discretizations are not available. We also employ an efficient $k$-$d$ tree algorithm to compute the sparse kernel matrix, which is a computational bottleneck.

This paper is a continuation of the work presented in [Chertock et al., Math. Cli. Weather Forecast. 5, 1 (2019), 65--106]. We study uncertainty propagation in warm cloud dynamics of weakly compressible fluids. The mathematical model is governed by a multiscale system of PDEs in which the macroscopic fluid dynamics is described by a weakly compressible Navier-Stokes system and the microscopic cloud dynamics is modeled by a convection-diffusion-reaction system. In order to quantify uncertainties present in the system, we derive and implement a generalized polynomial chaos stochastic Galerkin method. Unlike the first part of this work, where we restricted our consideration to the partially stochastic case in which the uncertainties were only present in the cloud physics equations, we now study a fully random Navier-Stokes-cloud model in which we include randomness in the macroscopic fluid dynamics as well. We conduct a series of numerical experiments illustrating the accuracy and efficiency of the developed approach.

We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.

We extend the Deep Galerkin Method (DGM) introduced in Sirignano and Spiliopoulos (2018)} to solve a number of partial differential equations (PDEs) that arise in the context of optimal stochastic control and mean field games. First, we consider PDEs where the function is constrained to be positive and integrate to unity, as is the case with Fokker-Planck equations. Our approach involves reparameterizing the solution as the exponential of a neural network appropriately normalized to ensure both requirements are satisfied. This then gives rise to nonlinear a partial integro-differential equation (PIDE) where the integral appearing in the equation is handled by a novel application of importance sampling. Secondly, we tackle a number of Hamilton-Jacobi-Bellman (HJB) equations that appear in stochastic optimal control problems. The key contribution is that these equations are approached in their unsimplified primal form which includes an optimization problem as part of the equation. We extend the DGM algorithm to solve for the value function and the optimal control \simultaneously by characterizing both as deep neural networks. Training the networks is performed by taking alternating stochastic gradient descent steps for the two functions, a technique inspired by the policy improvement algorithms (PIA).

This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, roughly studies the convergence order thus find that the low-order error of GFDM makes the convergence order of GFDM lower than that of FDM when node spacing is small, and points out the significant effect of the symmetry or uniformity of the node collocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied hyperbolic two-phase porous flow problem and the elliptic problems when GFDM is applied.

This manuscript gives a theoretical framework for a new Hilbert space of functions, the so called occupation kernel Hilbert space (OKHS), that operate on collections of signals rather than real or complex numbers. To support this new definition, an explicit class of OKHSs is given through the consideration of a reproducing kernel Hilbert space (RKHS). This space enables the definition of nonlocal operators, such as fractional order Liouville operators, as well as spectral decomposition methods for corresponding fractional order dynamical systems. In this manuscript, a fractional order DMD routine is presented, and the details of the finite rank representations are given. Significantly, despite the added theoretical content through the OKHS formulation, the resultant computations only differ slightly from that of occupation kernel DMD methods for integer order systems posed over RKHSs.

This paper proposes a numerical method based on the Adomian decomposition approach for the time discretization, applied to Euler equations. A recursive property is demonstrated that allows to formulate the method in an appropriate and efficient way. To obtain a fully numerical scheme, the space discretization is achieved using the classical DG techniques. The efficiency of the obtained numerical scheme is demonstrated through numerical tests by comparison to exact solution and the popular Runge-Kutta DG method results.

We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modelling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in space and time with inf-sup stable pairs of finite elements for the spatial approximation of the unknowns are investigated. Optimal order error estimates of energy-type are proven. Superconvergence at the time nodes is addressed briefly. The error analysis can be extended to discontinuous and enriched Galerkin space discretizations. The error estimates are confirmed by numerical experiments.

This extensive revision of my paper "Description of an $O(\text{poly}(n))$ Algorithm for NP-Complete Combinatorial Problems" will dramatically simplify the content of the original paper by solving subset-sum instead of $3$-SAT. I will first define the "product-derivative" method which will be used to generate a system of equations for solving unknown polynomial coefficients. Then I will describe the "Dragonfly" algorithm usable to solve subset-sum in $O(n^{16}\log(n))$ which is itself composed of a set of symbolic algebra steps on monic polynomials to convert a subset, $S_T$, of a set of positive integers, $S$, with a given target sum, $T$ into a polynomial with roots corresponding to the elements of $S_T$.

We propose a First-Order System Least Squares (FOSLS) method based on deep-learning for numerically solving second-order elliptic PDEs. The method we propose is capable of dealing with either variational and non-variational problems, and because of its meshless nature, it can also deal with problems posed in high-dimensional domains. We prove the $\Gamma$-convergence of the neural network approximation towards the solution of the continuous problem, and extend the convergence proof to some well-known related methods. Finally, we present several numerical examples illustrating the performance of our discretization.

北京阿比特科技有限公司