This paper establishes the asymptotic independence between the quadratic form and maximum of a sequence of independent random variables. Based on this theoretical result, we find the asymptotic joint distribution for the quadratic form and maximum, which can be applied into the high-dimensional testing problems. By combining the sum-type test and the max-type test, we propose the Fisher's combination tests for the one-sample mean test and two-sample mean test. Under this novel general framework, several strong assumptions in existing literature have been relaxed. Monte Carlo simulation has been done which shows that our proposed tests are strongly robust to both sparse and dense data.
The optimal moment to start renal replacement therapy in a patient with acute kidney injury (AKI) remains a challenging problem in intensive care nephrology. Multiple randomised controlled trials have tried to answer this question, but these can, by definition, only analyse a limited number of treatment initiation strategies. In view of this, we use routinely collected observational data from the Ghent University Hospital intensive care units (ICUs) to investigate different pre-specified timing strategies for renal replacement therapy initiation based on time-updated levels of serum potassium, pH and fluid balance in critically ill patients with AKI with the aim to minimize 30-day ICU mortality. For this purpose, we apply statistical techniques for evaluating the impact of specific dynamic treatment regimes in the presence of ICU discharge as a competing event. We discuss two approaches, a non-parametric one - using an inverse probability weighted Aalen-Johansen estimator - and a semiparametric one - using dynamic-regime marginal structural models. Furthermore, we suggest an easy to implement cross-validation technique that can be used for the out-of-sample performance assessment of the optimal dynamic treatment regime. Our work illustrates the potential of data-driven medical decision support based on routinely collected observational data.
Choice of appropriate structure and parametric dimension of a model in the light of data has a rich history in statistical research, where the first seminal approaches were developed in 1970s, such as the Akaike's and Schwarz's model scoring criteria that were inspired by information theory and embodied the rationale called Occam's razor. After those pioneering works, model choice was quickly established as its own field of research, gaining considerable attention in both computer science and statistics. However, to date, there have been limited attempts to derive scoring criteria for simulator-based models lacking a likelihood expression. Bayes factors have been considered for such models, but arguments have been put both for and against use of them and around issues related to their consistency. Here we use the asymptotic properties of Jensen--Shannon divergence (JSD) to derive a consistent model scoring criterion for the likelihood-free setting called JSD-Razor. Relationships of JSD-Razor with established scoring criteria for the likelihood-based approach are analyzed and we demonstrate the favorable properties of our criterion using both synthetic and real modeling examples.
We study the scaling limits of stochastic gradient descent (SGD) with constant step-size in the high-dimensional regime. We prove limit theorems for the trajectories of summary statistics (i.e., finite-dimensional functions) of SGD as the dimension goes to infinity. Our approach allows one to choose the summary statistics that are tracked, the initialization, and the step-size. It yields both ballistic (ODE) and diffusive (SDE) limits, with the limit depending dramatically on the former choices. Interestingly, we find a critical scaling regime for the step-size below which the effective ballistic dynamics matches gradient flow for the population loss, but at which, a new correction term appears which changes the phase diagram. About the fixed points of this effective dynamics, the corresponding diffusive limits can be quite complex and even degenerate. We demonstrate our approach on popular examples including estimation for spiked matrix and tensor models and classification via two-layer networks for binary and XOR-type Gaussian mixture models. These examples exhibit surprising phenomena including multimodal timescales to convergence as well as convergence to sub-optimal solutions with probability bounded away from zero from random (e.g., Gaussian) initializations.
Functional linear and single-index models are core regression methods in functional data analysis and are widely used methods for performing regression when the covariates are observed random functions coupled with scalar responses in a wide range of applications. In the existing literature, however, the construction of associated estimators and the study of their theoretical properties is invariably carried out on a case-by-case basis for specific models under consideration. In this work, we provide a unified methodological and theoretical framework for estimating the index in functional linear and single-index models; in the later case the proposed approach does not require the specification of the link function. In terms of methodology, we show that the reproducing kernel Hilbert space (RKHS) based functional linear least-squares estimator, when viewed through the lens of an infinite-dimensional Gaussian Stein's identity, also provides an estimator of the index of the single-index model. On the theoretical side, we characterize the convergence rates of the proposed estimators for both linear and single-index models. Our analysis has several key advantages: (i) we do not require restrictive commutativity assumptions for the covariance operator of the random covariates on one hand and the integral operator associated with the reproducing kernel on the other hand; and (ii) we also allow for the true index parameter to lie outside of the chosen RKHS, thereby allowing for index mis-specification as well as for quantifying the degree of such index mis-specification. Several existing results emerge as special cases of our analysis.
In high-dimensional prediction settings, it remains challenging to reliably estimate the test performance. To address this challenge, a novel performance estimation framework is presented. This framework, called Learn2Evaluate, is based on learning curves by fitting a smooth monotone curve depicting test performance as a function of the sample size. Learn2Evaluate has several advantages compared to commonly applied performance estimation methodologies. Firstly, a learning curve offers a graphical overview of a learner. This overview assists in assessing the potential benefit of adding training samples and it provides a more complete comparison between learners than performance estimates at a fixed subsample size. Secondly, a learning curve facilitates in estimating the performance at the total sample size rather than a subsample size. Thirdly, Learn2Evaluate allows the computation of a theoretically justified and useful lower confidence bound. Furthermore, this bound may be tightened by performing a bias correction. The benefits of Learn2Evaluate are illustrated by a simulation study and applications to omics data.
Performance assessment and optimization for networks jointly performing caching, computing, and communication (3C) has recently drawn significant attention because many emerging applications require 3C functionality. However, studies in the literature mostly focus on the particular algorithms and setups of such networks, while their theoretical understanding and characterization has been less explored. To fill this gap, this paper conducts the asymptotic (scaling-law) analysis for the delay-outage tradeoff of noise-limited wireless edge networks with joint 3C. In particular, assuming the user requests for different tasks following a Zipf distribution, we derive the analytical expression for the optimal caching policy. Based on this, we next derive the closed-form expression for the optimum outage probability as a function of delay and other network parameters for the case that the Zipf parameter is smaller than 1. Then, for the case that the Zipf parameter is larger than 1, we derive the closed-form expressions for upper and lower bounds of the optimum outage probability. We provide insights and interpretations based on the derived expressions. Computer simulations validate our analytical results and insights.
High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and $\ell^1$ minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best $s$-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.
In linear regression we wish to estimate the optimum linear least squares predictor for a distribution over $d$-dimensional input points and real-valued responses, based on a small sample. Under standard random design analysis, where the sample is drawn i.i.d. from the input distribution, the least squares solution for that sample can be viewed as the natural estimator of the optimum. Unfortunately, this estimator almost always incurs an undesirable bias coming from the randomness of the input points, which is a significant bottleneck in model averaging. In this paper we show that it is possible to draw a non-i.i.d. sample of input points such that, regardless of the response model, the least squares solution is an unbiased estimator of the optimum. Moreover, this sample can be produced efficiently by augmenting a previously drawn i.i.d. sample with an additional set of $d$ points, drawn jointly according to a certain determinantal point process constructed from the input distribution rescaled by the squared volume spanned by the points. Motivated by this, we develop a theoretical framework for studying volume-rescaled sampling, and in the process prove a number of new matrix expectation identities. We use them to show that for any input distribution and $\epsilon>0$ there is a random design consisting of $O(d\log d+ d/\epsilon)$ points from which an unbiased estimator can be constructed whose expected square loss over the entire distribution is bounded by $1+\epsilon$ times the loss of the optimum. We provide efficient algorithms for generating such unbiased estimators in a number of practical settings and support our claims experimentally.
Random embeddings project high-dimensional spaces to low-dimensional ones; they are careful constructions which allow the approximate preservation of key properties, such as the pair-wise distances between points. Often in the field of optimisation, one needs to explore high-dimensional spaces representing the problem data or its parameters and thus the computational cost of solving an optimisation problem is connected to the size of the data/variables. This thesis studies the theoretical properties of norm-preserving random embeddings, and their application to several classes of optimisation problems.
The crude Monte Carlo approximates the integral $$S(f)=\int_a^b f(x)\,\mathrm dx$$ with expected error (deviation) $\sigma(f)N^{-1/2},$ where $\sigma(f)^2$ is the variance of $f$ and $N$ is the number of random samples. If $f\in C^r$ then special variance reduction techniques can lower this error to the level $N^{-(r+1/2)}.$ In this paper, we consider methods of the form $$\overline M_{N,r}(f)=S(L_{m,r}f)+M_n(f-L_{m,r}f),$$ where $L_{m,r}$ is the piecewise polynomial interpolation of $f$ of degree $r-1$ using a partition of the interval $[a,b]$ into $m$ subintervals, $M_n$ is a Monte Carlo approximation using $n$ samples of $f,$ and $N$ is the total number of function evaluations used. We derive asymptotic error formulas for the methods $\overline M_{N,r}$ that use nonadaptive as well as adaptive partitions. Although the convergence rate $N^{-(r+1/2)}$ cannot be beaten, the asymptotic constants make a huge difference. For example, for $\int_0^1(x+d)^{-1}\mathrm dx$ and $r=4$ the best adaptive methods overcome the nonadaptive ones roughly $10^{12}$ times if $d=10^{-4},$ and $10^{29}$ times if $d=10^{-8}.$ In addition, the proposed adaptive methods are easily implementable and can be well used for automatic integration. We believe that the obtained results can be generalized to multivariate integration.