Semantic Change Detection (SCD) of words is an important task for various NLP applications that must make time-sensitive predictions. Some words are used over time in novel ways to express new meanings, and these new meanings establish themselves as novel senses of existing words. On the other hand, Word Sense Disambiguation (WSD) methods associate ambiguous words with sense ids, depending on the context in which they occur. Given this relationship between WSD and SCD, we explore the possibility of predicting whether a target word has its meaning changed between two corpora collected at different time steps, by comparing the distributions of senses of that word in each corpora. For this purpose, we use pretrained static sense embeddings to automatically annotate each occurrence of the target word in a corpus with a sense id. Next, we compute the distribution of sense ids of a target word in a given corpus. Finally, we use different divergence or distance measures to quantify the semantic change of the target word across the two given corpora. Our experimental results on SemEval 2020 Task 1 dataset show that word sense distributions can be accurately used to predict semantic changes of words in English, German, Swedish and Latin.
Recently, a series of studies have tried to extract interactions between input variables modeled by a DNN and define such interactions as concepts encoded by the DNN. However, strictly speaking, there still lacks a solid guarantee whether such interactions indeed represent meaningful concepts. Therefore, in this paper, we examine the trustworthiness of interaction concepts from four perspectives. Extensive empirical studies have verified that a well-trained DNN usually encodes sparse, transferable, and discriminative concepts, which is partially aligned with human intuition.
Programming language understanding and representation (a.k.a code representation learning) has always been a hot and challenging task in software engineering. It aims to apply deep learning techniques to produce numerical representations of the source code features while preserving its semantics. These representations can be used for facilitating subsequent code-related tasks. The abstract syntax tree (AST), a fundamental code feature, illustrates the syntactic information of the source code and has been widely used in code representation learning. However, there is still a lack of systematic and quantitative evaluation of how well AST-based code representation facilitates subsequent code-related tasks. In this paper, we first conduct a comprehensive empirical study to explore the effectiveness of the AST-based code representation in facilitating follow-up code-related tasks. To do so, we compare the performance of models trained with code token sequence (Token for short) based code representation and AST-based code representation on three popular types of code-related tasks. Surprisingly, the overall quantitative statistical results demonstrate that models trained with AST-based code representation consistently perform worse across all three tasks compared to models trained with Token-based code representation. Our further quantitative analysis reveals that models trained with AST-based code representation outperform models trained with Token-based code representation in certain subsets of samples across all three tasks. We also conduct comprehensive experiments to evaluate and reveal the impact of the choice of AST parsing/preprocessing/encoding methods on AST-based code representation and subsequent code-related tasks. Our study provides future researchers with detailed guidance on how to select solutions at each stage to fully exploit AST.
Underwater object detection is a crucial and challenging problem in marine engineering and aquatic robot. The difficulty is partly because of the degradation of underwater images caused by light selective absorption and scattering. Intuitively, enhancing underwater images can benefit high-level applications like underwater object detection. However, it is still unclear whether all object detectors need underwater image enhancement as pre-processing. We therefore pose the questions "Does underwater image enhancement really improve underwater object detection?" and "How does underwater image enhancement contribute to underwater object detection?". With these two questions, we conduct extensive studies. Specifically, we use 18 state-of-the-art underwater image enhancement algorithms, covering traditional, CNN-based, and GAN-based algorithms, to pre-process underwater object detection data. Then, we retrain 7 popular deep learning-based object detectors using the corresponding results enhanced by different algorithms, obtaining 126 underwater object detection models. Coupled with 7 object detection models retrained using raw underwater images, we employ these 133 models to comprehensively analyze the effect of underwater image enhancement on underwater object detection. We expect this study can provide sufficient exploration to answer the aforementioned questions and draw more attention of the community to the joint problem of underwater image enhancement and underwater object detection. The pre-trained models and results are publicly available and will be regularly updated. Project page: //github.com/BIGWangYuDong/lqit/tree/main/configs/detection/uw_enhancement_affect_detection.
Do large language models (LLMs) exhibit sociodemographic biases, even when they decline to respond? To bypass their refusal to "speak," we study this research question by probing contextualized embeddings and exploring whether this bias is encoded in its latent representations. We propose a logistic Bradley-Terry probe which predicts word pair preferences of LLMs from the words' hidden vectors. We first validate our probe on three pair preference tasks and thirteen LLMs, where we outperform the word embedding association test (WEAT), a standard approach in testing for implicit association, by a relative 27% in error rate. We also find that word pair preferences are best represented in the middle layers. Next, we transfer probes trained on harmless tasks (e.g., pick the larger number) to controversial ones (compare ethnicities) to examine biases in nationality, politics, religion, and gender. We observe substantial bias for all target classes: for instance, the Mistral model implicitly prefers Europe to Africa, Christianity to Judaism, and left-wing to right-wing politics, despite declining to answer. This suggests that instruction fine-tuning does not necessarily debias contextualized embeddings. Our codebase is at //github.com/castorini/biasprobe.
Inverse Reinforcement Learning (IRL) -- the problem of learning reward functions from demonstrations of an \emph{expert policy} -- plays a critical role in developing intelligent systems, such as those that understand and imitate human behavior. While widely used in applications, theoretical understandings of IRL admit unique challenges and remain less developed compared with standard RL theory. For example, it remains open how to do IRL efficiently in standard \emph{offline} settings with pre-collected data, where states are obtained from a \emph{behavior policy} (which could be the expert policy itself), and actions are sampled from the expert policy. This paper provides the first line of results for efficient IRL in vanilla offline and online settings using polynomial samples and runtime. We first design a new IRL algorithm for the offline setting, Reward Learning with Pessimism (RLP), and show that it achieves polynomial sample complexity in terms of the size of the MDP, a concentrability coefficient between the behavior policy and the expert policy, and the desired accuracy. Building on RLP, we further design an algorithm Reward Learning with Exploration (RLE), which operates in a natural online setting where the learner can both actively explore the environment and query the expert policy, and obtain a stronger notion of IRL guarantee from polynomial samples. We establish sample complexity lower bounds for both settings showing that RLP and RLE are nearly optimal. Finally, as an application, we show that the learned reward functions can \emph{transfer} to another target MDP with suitable guarantees when the target MDP satisfies certain similarity assumptions with the original (source) MDP.
Data augmentation via back-translation is common when pretraining Vision-and-Language Navigation (VLN) models, even though the generated instructions are noisy. But: does that noise matter? We find that nonsensical or irrelevant language instructions during pretraining can have little effect on downstream performance for both HAMT and VLN-BERT on R2R, and is still better than only using clean, human data. To underscore these results, we concoct an efficient augmentation method, Unigram + Object, which generates nonsensical instructions that nonetheless improve downstream performance. Our findings suggest that what matters for VLN R2R pretraining is the quantity of visual trajectories, not the quality of instructions.
Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.