Existing bounds on the generalization error of deep networks assume some form of smooth or bounded dependence on the input variable, falling short of investigating the mechanisms controlling such factors in practice. In this work, we present an extensive experimental study of the empirical Lipschitz constant of deep networks undergoing double descent, and highlight non-monotonic trends strongly correlating with the test error. Building a connection between parameter-space and input-space gradients for SGD around a critical point, we isolate two important factors -- namely loss landscape curvature and distance of parameters from initialization -- respectively controlling optimization dynamics around a critical point and bounding model function complexity, even beyond the training data. Our study presents novels insights on implicit regularization via overparameterization, and effective model complexity for networks trained in practice.
We study the generalization behavior of transfer learning of deep neural networks (DNNs). We adopt the overparameterization perspective -- featuring interpolation of the training data (i.e., approximately zero train error) and the double descent phenomenon -- to explain the delicate effect of the transfer learning setting on generalization performance. We study how the generalization behavior of transfer learning is affected by the dataset size in the source and target tasks, the number of transferred layers that are kept frozen in the target DNN training, and the similarity between the source and target tasks. We show that the test error evolution during the target DNN training has a more significant double descent effect when the target training dataset is sufficiently large. In addition, a larger source training dataset can yield a slower target DNN training. Moreover, we demonstrate that the number of frozen layers can determine whether the transfer learning is effectively underparameterized or overparameterized and, in turn, this may induce a freezing-wise double descent phenomenon that determines the relative success or failure of learning. Also, we show that the double descent phenomenon may make a transfer from a less related source task better than a transfer from a more related source task. We establish our results using image classification experiments with the ResNet, DenseNet and the vision transformer (ViT) architectures.
One-shot channel simulation is a fundamental data compression problem concerned with encoding a single sample from a target distribution $Q$ using a coding distribution $P$ using as few bits as possible on average. Algorithms that solve this problem find applications in neural data compression and differential privacy and can serve as a more efficient alternative to quantization-based methods. Sadly, existing solutions are too slow or have limited applicability, preventing widespread adoption. In this paper, we conclusively solve one-shot channel simulation for one-dimensional problems where the target-proposal density ratio is unimodal by describing an algorithm with optimal runtime. We achieve this by constructing a rejection sampling procedure equivalent to greedily searching over the points of a Poisson process. Hence, we call our algorithm greedy Poisson rejection sampling (GPRS) and analyze the correctness and time complexity of several of its variants. Finally, we empirically verify our theorems, demonstrating that GPRS significantly outperforms the current state-of-the-art method, A* coding.
In sim-to-real Reinforcement Learning (RL), a policy is trained in a simulated environment and then deployed on the physical system. The main challenge of sim-to-real RL is to overcome the reality gap - the discrepancies between the real world and its simulated counterpart. Using general geometric representations, such as convex decomposition, triangular mesh, signed distance field can improve simulation fidelity, and thus potentially narrow the reality gap. Common to these approaches is that many contact points are generated for geometrically-complex objects, which slows down simulation and may cause numerical instability. Contact reduction methods address these issues by limiting the number of contact points, but the validity of these methods for sim-to-real RL has not been confirmed. In this paper, we present a contact reduction method with bounded stiffness to improve the simulation accuracy. Our experiments show that the proposed method critically enables training RL policy for a tight-clearance double pin insertion task and successfully deploying the policy on a rigid, position-controlled physical robot.
As Graph Neural Networks (GNNs) have been widely used in real-world applications, model explanations are required not only by users but also by legal regulations. However, simultaneously achieving high fidelity and low computational costs in generating explanations has been a challenge for current methods. In this work, we propose a framework of GNN explanation named LeArn Removal-based Attribution (LARA) to address this problem. Specifically, we introduce removal-based attribution and demonstrate its substantiated link to interpretability fidelity theoretically and experimentally. The explainer in LARA learns to generate removal-based attribution which enables providing explanations with high fidelity. A strategy of subgraph sampling is designed in LARA to improve the scalability of the training process. In the deployment, LARA can efficiently generate the explanation through a feed-forward pass. We benchmark our approach with other state-of-the-art GNN explanation methods on six datasets. Results highlight the effectiveness of our framework regarding both efficiency and fidelity. In particular, LARA is 3.5 times faster and achieves higher fidelity than the state-of-the-art method on the large dataset ogbn-arxiv (more than 160K nodes and 1M edges), showing its great potential in real-world applications. Our source code is available at //anonymous.4open.science/r/LARA-10D8/README.md.
Stochastic gradient descent (SGD) has become a cornerstone of neural network optimization, yet the noise introduced by SGD is often assumed to be uncorrelated over time, despite the ubiquity of epoch-based training. In this work, we challenge this assumption and investigate the effects of epoch-based noise correlations on the stationary distribution of discrete-time SGD with momentum, limited to a quadratic loss. Our main contributions are twofold: first, we calculate the exact autocorrelation of the noise for training in epochs under the assumption that the noise is independent of small fluctuations in the weight vector; second, we explore the influence of correlations introduced by the epoch-based learning scheme on SGD dynamics. We find that for directions with a curvature greater than a hyperparameter-dependent crossover value, the results for uncorrelated noise are recovered. However, for relatively flat directions, the weight variance is significantly reduced. We provide an intuitive explanation for these results based on a crossover between correlation times, contributing to a deeper understanding of the dynamics of SGD in the presence of epoch-based noise correlations.
Understanding the characteristics of neural networks is important but difficult due to their complex structures and behaviors. Some previous work proposes to transform neural networks into equivalent Boolean expressions and apply verification techniques for characteristics of interest. This approach is promising since rich results of verification techniques for circuits and other Boolean expressions can be readily applied. The bottleneck is the time complexity of the transformation. More precisely, (i) each neuron of the network, i.e., a linear threshold function, is converted to a Binary Decision Diagram (BDD), and (ii) they are further combined into some final form, such as Boolean circuits. For a linear threshold function with $n$ variables, an existing method takes $O(n2^{\frac{n}{2}})$ time to construct an ordered BDD of size $O(2^{\frac{n}{2}})$ consistent with some variable ordering. However, it is non-trivial to choose a variable ordering producing a small BDD among $n!$ candidates. We propose a method to convert a linear threshold function to a specific form of a BDD based on the boosting approach in the machine learning literature. Our method takes $O(2^n \text{poly}(1/\rho))$ time and outputs BDD of size $O(\frac{n^2}{\rho^4}\ln{\frac{1}{\rho}})$, where $\rho$ is the margin of some consistent linear threshold function. Our method does not need to search for good variable orderings and produces a smaller expression when the margin of the linear threshold function is large. More precisely, our method is based on our new boosting algorithm, which is of independent interest. We also propose a method to combine them into the final Boolean expression representing the neural network.
In many information processing systems, it may be desirable to ensure that any change of the input, whether by shifting or scaling, results in a corresponding change in the system response. While deep neural networks are gradually replacing all traditional automatic processing methods, they surprisingly do not guarantee such normalization-equivariance (scale + shift) property, which can be detrimental in many applications. To address this issue, we propose a methodology for adapting existing neural networks so that normalization-equivariance holds by design. Our main claim is that not only ordinary convolutional layers, but also all activation functions, including the ReLU (rectified linear unit), which are applied element-wise to the pre-activated neurons, should be completely removed from neural networks and replaced by better conditioned alternatives. To this end, we introduce affine-constrained convolutions and channel-wise sort pooling layers as surrogates and show that these two architectural modifications do preserve normalization-equivariance without loss of performance. Experimental results in image denoising show that normalization-equivariant neural networks, in addition to their better conditioning, also provide much better generalization across noise levels.
In this paper, we present a simple yet effective provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning. Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch. The individual-level weight of sampled data is systematically proportional to the exponential of a scaled loss value of the data, where the scaling factor is interpreted as the regularization parameter in the framework of distributionally robust optimization (DRO). Depending on whether the scaling factor is positive or negative, ABSGD is guaranteed to converge to a stationary point of an information-regularized min-max or min-min DRO problem, respectively. Compared with existing class-level weighting schemes, our method can capture the diversity between individual examples within each class. Compared with existing individual-level weighting methods using meta-learning that require three backward propagations for computing mini-batch stochastic gradients, our method is more efficient with only one backward propagation at each iteration as in standard deep learning methods. ABSGD is flexible enough to combine with other robust losses without any additional cost. Our empirical studies on several benchmark datasets demonstrate the effectiveness of the proposed method.\footnote{Code is available at:\url{//github.com/qiqi-helloworld/ABSGD/}}
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.