This paper considers the Westervelt equation, one of the most widely used models in nonlinear acoustics, and seeks to recover two spatially-dependent parameters of physical importance from time-trace boundary measurements. Specifically, these are the nonlinearity parameter $\kappa(x)$ often referred to as $B/A$ in the acoustics literature and the wave speed $c_0(x)$. The determination of the spatial change in these quantities can be used as a means of imaging. We consider identifiability from one or two boundary measurements as relevant in these applications. For a reformulation of the problem in terms of the squared slowness $\mathfrak{s}=1/c_0^2$ and the combined coefficient $\eta=\frac{B/A+2}{\varrho_0 c_0^4}$ we devise a frozen Newton method and prove its convergence. The effectiveness (and limitations) of this iterative scheme are demonstrated by numerical examples.
We study the approximation properties of complex-valued polynomial Trefftz spaces for the $(d+1)$-dimensional linear time-dependent Schr\"odinger equation. More precisely, we prove that for the space-time Trefftz discontinuous Galerkin variational formulation proposed by G\'omez, Moiola (SIAM. J. Num. Anal. 60(2): 688-714, 2022), the same $h$-convergence rates as for polynomials of degree $p$ in $(d + 1)$ variables can be obtained in a mesh-dependent norm by using a space of Trefftz polynomials of anisotropic degree. For such a space, the dimension is equal to that of the space of polynomials of degree $2p$ in $d$ variables, and bases are easily constructed.
Time-dependent gravity data from satellite missions like GRACE-FO reveal mass redistribution in the system Earth at various time scales: long-term climate change signals, inter-annual phenomena like El Nino, seasonal mass transports and transients, e. g. due to earthquakes. For this contemporary issue, a classical inverse problem has to be considered: the gravitational potential has to be modelled on the Earth's surface from measurements in space. This is also known as the downward continuation problem. Thus, it is important to further develop current mathematical methods for such inverse problems. For this, the (Learning) Inverse Problem Matching Pursuits ((L)IPMPs) have been developed within the last decade. Their unique feature is the combination of local as well as global trial functions in the approximative solution of an inverse problem such as the downward continuation of the gravitational potential. In this way, they harmonize the ideas of a traditional spherical harmonic ansatz and the radial basis function approach. Previous publications on these methods showed proofs of concept. Here, we consider the methods for high-dimensional experiments settings with more than 500 000 grid points which yields a resolution of 20 km at best on a realistic satellite geometry. We also explain the changes in the methods that had to be done to work with such a large amount of data. The corresponding code (updated for big data use) is available at //doi.org/10.5281/zenodo.8223771 under the licence CC BY-NC-SA 3.0 Germany.
Blow-up solutions to a heat equation with spatial periodicity and a quadratic nonlinearity are studied through asymptotic analyses and a variety of numerical methods. The focus is on the dynamics of the singularities in the complexified space domain. Blow up in finite time is caused by these singularities eventually reaching the real axis. The analysis provides a distinction between small and large nonlinear effects, as well as insight into the various time scales on which blow up is approached. It is shown that an ordinary differential equation with quadratic nonlinearity plays a central role in the asymptotic analysis. This equation is studied in detail, including its numerical computation on multiple Riemann sheets, and the far-field solutions are shown to be given at leading order by a Weierstrass elliptic function.
The propagation delay is non-negligible in underwater acoustic networks (UANs) since the propagation speed is five orders of magnitude smaller than the speed of light. In this case, space and time factors are strongly coupled to determine the collisions of packet transmissions. To this end, this paper analyzes the impact of spatial-time coupling on slotted medium access control (MAC). We find that both inter-slot and intra-slot collisions may exist, and the inter-slot collision may span multiple slots. The sending slot dependent interference regions could be an annulus inside the whole transmission range. It is pointed out that there exist collision-free regions when a guard interval larger than a packet duration is used in the slot setting. In this sense, the long slot brings spatial reuse in a transmission range. However, we further find that the successful transmission probabilities and throughput are the same for the slot lengths of one packet duration and two packet durations. Simulation results show that the maximum successful transmission probability and throughput can be achieved by a guard interval less than a packet duration, which is much shorter than the existing slot setting in typical Slotted-ALOHA. Simulations also show that the spatial impact is greater for vertical transmission than for horizontal transmissions due to the longer vertical transmission range in three-dimensional UANs.
Particle methods based on evolving the spatial derivatives of the solution were originally introduced to simulate reaction-diffusion processes, inspired by vortex methods for the Navier--Stokes equations. Such methods, referred to as gradient random walk methods, were extensively studied in the '90s and have several interesting features, such as being grid free, automatically adapting to the solution by concentrating elements where the gradient is large and significantly reducing the variance of the standard random walk approach. In this work, we revive these ideas by showing how to generalize the approach to a larger class of partial differential equations, including hyperbolic systems of conservation laws. To achieve this goal, we first extend the classical Monte Carlo method to relaxation approximation of systems of conservation laws, and subsequently consider a novel particle dynamics based on the spatial derivatives of the solution. The methodology, combined with asymptotic-preserving splitting discretization, yields a way to construct a new class of gradient-based Monte Carlo methods for hyperbolic systems of conservation laws. Several results in one spatial dimension for scalar equations and systems of conservation laws show that the new methods are very promising and yield remarkable improvements compared to standard Monte Carlo approaches, either in terms of variance reduction as well as in describing the shock structure.
The purpose of this paper is to introduce a new numerical method to solve multi-marginal optimal transport problems with pairwise interaction costs. The complexity of multi-marginal optimal transport generally scales exponentially in the number of marginals $m$. We introduce a one parameter family of cost functions that interpolates between the original and a special cost function for which the problem's complexity scales linearly in $m$. We then show that the solution to the original problem can be recovered by solving an ordinary differential equation in the parameter $\epsilon$, whose initial condition corresponds to the solution for the special cost function mentioned above; we then present some simulations, using both explicit Euler and explicit higher order Runge-Kutta schemes to compute solutions to the ODE, and, as a result, the multi-marginal optimal transport problem.
The power of Clifford or, geometric, algebra lies in its ability to represent geometric operations in a concise and elegant manner. Clifford algebras provide the natural generalizations of complex, dual numbers and quaternions into non-commutative multivectors. The paper demonstrates an algorithm for the computation of inverses of such numbers in a non-degenerate Clifford algebra of an arbitrary dimension. The algorithm is a variation of the Faddeev-LeVerrier-Souriau algorithm and is implemented in the open-source Computer Algebra System Maxima. Symbolic and numerical examples in different Clifford algebras are presented.
In multi-objective optimization, a single decision vector must balance the trade-offs between many objectives. Solutions achieving an optimal trade-off are said to be Pareto optimal: these are decision vectors for which improving any one objective must come at a cost to another. But as the set of Pareto optimal vectors can be very large, we further consider a more practically significant Pareto-constrained optimization problem, where the goal is to optimize a preference function constrained to the Pareto set. We investigate local methods for solving this constrained optimization problem, which poses significant challenges because the constraint set is (i) implicitly defined, and (ii) generally non-convex and non-smooth, even when the objectives are. We define notions of optimality and stationarity, and provide an algorithm with a last-iterate convergence rate of $O(K^{-1/2})$ to stationarity when the objectives are strongly convex and Lipschitz smooth.
This work focuses on solving super-linear stochastic differential equations (SDEs) involving different time scales numerically. Taking advantages of being explicit and easily implementable, a multiscale truncated Euler-Maruyama scheme is proposed for slow-fast SDEs with local Lipschitz coefficients. By virtue of the averaging principle, the strong convergence of its numerical solutions to the exact ones in pth moment is obtained. Furthermore, under mild conditions on the coefficients, the corresponding strong error estimate is also provided. Finally, two examples and some numerical simulations are given to verify the theoretical results.
This paper focuses on investigating the learning operators for identifying weak solutions to the Navier-Stokes equations. Our objective is to establish a connection between the initial data as input and the weak solution as output. To achieve this, we employ a combination of deep learning methods and compactness argument to derive learning operators for weak solutions for any large initial data in 2D, and for low-dimensional initial data in 3D. Additionally, we utilize the universal approximation theorem to derive a lower bound on the number of sensors required to achieve accurate identification of weak solutions to the Navier-Stokes equations. Our results demonstrate the potential of using deep learning techniques to address challenges in the study of fluid mechanics, particularly in identifying weak solutions to the Navier-Stokes equations.